INDENICA

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Tool Suite for Deployment, Monitoring & Controlling
of Virtual Service Platforms (Final)

Abstract

In order to bring Virtual Service Platforms to the operational state, besides its pre-
configuration, additional deployment and runtime activities need to take place.

To ensure the proper execution of the VSP we advocate the use of several supporting
tools for deployment, monitoring and controlling whose design and implementation
is challenging for several reasons: (i) monitoring and adaptation tools have to take
into account heterogeneousness of underlying service platforms; (ii) different service
platforms use different mechanisms and communication schemes for monitoring (i.e.
events, JIMX, SMINP) from which all needs to be covered by appropriate tools; (iii) it is
not trivial to define a standardized monitoring and adaptation interfaces for all
existing and future service platforms.

This deliverable shows the final state of the tools proposed to address these
challenges.

Document ID: INDENICA - D4.2.2

Deliverable Number: D4.2.2

Work Package: WP4

Type: Deliverable

Dissemination Level: PU

Status: final

Version: 1.0

Date: 2013-09-30

Author(s): NDL, TUV, SAP, PDM, SUH, SIE, UV

Project Start Date: October 1%'2010, Duration: 36months

INDENICA D4.2.1

Version
0.1 20. September 2013
0.2 27. September 2013

0.3 17. October 2013
1.0 21. October 2013

Document Properties

Initial version
Updated and revised Section 2.5
Updated Section 4 and Apendix A

Final version

The spell checking language for this document is set to UK English.

Table of Contents

1
2

INEFOAUCTION ..t e e 6
Integration of the tool suite with supporting toolscccvveeiiiiiiiieii i, 7
2.1 Goal-based modeling FrameWoOrkK...........uuveiiriiiiieeiiiiiiiieee e e e 7
2.2 Service Platform Infrastructure Repository and EASy-Producercc......... 7
2.3 MONITOriNG rUlE EAILOruviiiiiiiiiiiee e s are e e e 8
2.4 Adaptation rule @ditOr ... e 8
2.5 INDENICA Tool Suite for VSP ENgINEEriNg.......cccuveeeiviiiieeeeiiriiieee e essieeeeeeenans 9
2.5.1 Generation of monitoring rules based on SLA modeling...........cccceeuuuueen. 9
2.5.2 Generation of deployment descriptorsccccceveevriiieeeeinniiiieee e, 10
Tool suite for deployment of Virtual Service Platformsccoccvveeeiiniiiiieeeiinnnns 11
3.1 Deployment IMan@BEr.......uuiiiiiiuiiieeeiiiiieeee e esiiree e e e ssiaeee e s s sirre e e e e sssraaeeeeens 11
3.2 Example of the Deployment ProCess.......ccccevvieieeeeiiiiiiiieeeseniieeeeeessiieeeee e 11
Tool suite for monitoring of Virtual Service Platforms.......ccccoeccviveviiniiiiieeniinnnns 14
4.1 SPASS-METEI c.ciiiiiiiiiiiiiiee e 14
4.2 ECOWaAIE ..ottt ettt e e e e s 16
4.3 MONINA Lttt e sttt e st e e et e e s aare e e sanreeesennees 20
B.3.1 EVENT .t 22
4.3.2 ACTION .ttt e e s e 22
B.3.3 FACT ittt e e e as 22
4.3.4 COMPONENT ..o e e e e e e e e e et ettt er e s e e as 23
4.3.5 MONITOMNG QUEIY ..uieeeeieiieeeeeeeeeeteeet e e e e e e e e et 24
4.3.6 Adaptation RUIEuviiiiiiiiiiec et 25
B.3.7 HOST oottt e 25
4.4 MONITOFING ENEINES ...ueiiieee e e e e e e e e e et et e e as 25
4.5 Domain-SPeCific @VENTS....ccuuviiiiiiiiiiiee e 26
4.5.1 Eventsin Remote Maintenance System ..., 27
4.5.2 Eventsin Yard Management SUbSYSteMcccoovvvieeeiiiiiiiieeeeenniieeeeene 29
4.5.3 Events in Warehouse Management Systemcccccceevvviiiieeeiiniiineeeeenn. 30
4.6 Runtime Governance Dashboardccccceooiiiiiiiiiiiiiieee e 31
4.6.1 Installation and configuration.........cccceevvviiiiiii i 33
4.7 System Supervision Dashboardccccoeeiiiiiiiniiiiee e, 33

4.7.1 Installation and configuration..........ccccevvviiiieei i 35

INDENICA D4.2.1

5 Tool suite for adaptation of Virtual Service Platformscccccoecviiiiiiiniiiiieeiinnns 37
5.1 Adaptation ENGINES.....ccooiuiiiiiiiiiiiiiieeeeniiteee et et e e e s s sraree e s s sanneeeas 37
5.2 Adaptive Monitoring INterfaceccccvvvviieeeiiiniiiie e 37

5.2.1 Installation and configuration........cccccoevuiieiiiiiiiiieee e 39
5.3 Adaptation of base platforms..........ceeiiiiiiiiiiii . 39

B SUMIMIAIY et e s e e e e e e e e e e et te et e eb s e s e e e e e e eeeeeereteeeeernnnnaan 42

A Appendix 1: ECOWare Usage GUITEcovvuuiiieeiiiiiiiieeeecriiieee e ssiinee e e ssivaeeee e 43
A1 Installation and SETUP......ocuiiiiii i 43
A2 TULOTIAN e s s 45

B Appendix 2: SPASS-meter QUICK GUIEccovvuviieiiiiiiiiiee e 51
B.1 INSTAllatioN ..ccoeiiiiieiiee e 51
S T Y=Y { U]« OO PP PP PP PPPPPUPPPPTNY 51
B.3 EXAMIPIE eeiiiiiiiieiee ettt e e st e e s s bra e e e s e e aees 52

C Appendix 3: Indenica Runtime Platform Demonstrator........cccccvveeeiiiniivieeeeinnnne 54
C.1 Initial EClipse Project SEtUP ..cccivviiiiiee ittt 54
C.2 Getting Project DependenCi@s........cccceveriirieeeeiiiiiiieee e eriiteee e essireee e seeeees 54

C.2.1 Manual Installation of Dependencies.......ccccvvvvreeeeiiriiiieeee e 54
C.2.2 Use a preconfigured Virtual Machine with all Dependencies 55

C.3 Starting the Platformocueiiiiiiie e 55
C.3.1 CommMANd LIN@....ccoouiiiiiiiiiieiiie ettt 55
(O3 0 Tl 110 Y < U PP PP UOPPPUPPN 56
RETEIENCES ...ttt e e e s e e s e e e e e 57

INDENICA D4.2.1

Table of Figures
Figure 1: Monitoring Rule Editor showing exemplary monitoring rulecccuvveee... 8
Figure 2: Adaptation Rule Editor showing exemplary adaptation rule..........cccuuveee... 9

Figure 3: Execution time overhead comparison in terms of SPECjvm2008 operations

DI MINUTE .ttt e ettt ettt b e e s e e e e e e eeeeeereeeeeeeessbaa s e e eeeeaeaaaeenenes 15
Figure 4: Architecture of the ECoWare Framework.ccccccveviviiiiiiiiinniiieeee e, 16
Figure 5: Sample MONINA System Definitioncccccceivriiiieieiiniiieeee e, 21
Figure 6: Simplified Event Grammar in EBNFcooviiiiiiiiiieeeee e, 22
Figure 7: Simplified Action Grammar in EBNFcccceoviiiiiiiii e, 22
Figure 8: Simplified Fact Grammar in EBNF........cccvviiiiiiiiiiiiie e 23
Figure 9: Simplified Component Grammar in EBNF.........cccccceeiiiiiiiiieeeiniiieee e, 23
Figure 10: Simplified Monitoring Query Grammar in EBNF..........cccccceevviiiieeeeiniinnenn. 24
Figure 11: Simplified Adaptation Rule Grammar in EBNF.........ccccccveiiiniiiiieeeiniieeen. 25
Figure 12: Simplified Host Grammar in EBNFcoovviiiiiiiiieiiiieec e, 25
Figure 13: Runtime Infrastructure Architecture: Monitoring Overview..................... 26
Figure 14: Main view of Runtime governance dashboard..........ccccccceevvviiiiieiiininnnen. 32
Figure 15: Detailed view of Runtime governance dashboard...........ccccccceeniiirnnnneen. 33

Figure 16: Rabbit MQ publish/subscribe system - producer, exchange, queue and

(oo 0 U o 1 T=] PP 34
Figure 17: Mean values of machine monitoring data.........ccccceevviiiieeiinniiiieee e, 34
Figure 18: Dashboards with the most important datacccccoeviveeiiiiniiiieei e, 35
Figure 19: Timeline with usage Of ProCeSSOr......cccuviiiiiiiciiiiee e 35
Figure 20: Runtime Infrastructure Architecture: Adaptation Overview.................... 37
Figure 21: Adaptive Monitoring Interface Architecturecccccoevvveeiiinniiiieeee i, 38

INDENICA D4.2.1

1 Introduction

The main purpose of the tool suite proposed as a part of this Work Package is to
bring the models, mechanisms and tools delivered by Work Packages 1-3 into their
operational state producing Virtual Service Platforms that will be deployable and
manageable at runtime.

Different tools make it possible to create scalable monitoring mechanisms that allow
generating a global overview of the VSP.

Tool suite also allows actors to cope with non-functional metrics of underlying
service platforms for different reasons, for example: (i) drilling down for root cause
of performance bottlenecks; (ii) estimation and evaluation of current and planned
adaptation policies; (iii) monitoring of a global view of the runtime environment.

In the second section of the document we describe how we leverage tools provided
by different technical Work Packages to support the WP4 tool suite. In the third
section we describe the deployment tool for instantiating different heterogeneous
service platforms together with their added-value interfaces. Fourth section
describes tools that provide monitoring capabilities. In the same section we also
describe how the monitoring engines cooperate with different service platform and
what kind of mechanisms they do use. In the fifth section we concentrate on the
tools that support adaptation of service platforms both on service level and on
platform level. Adaptation described in this section also entails certain changes in
the monitoring engine execution. In the last section we provide a summary of the
tool suite for Deployment, Monitoring & Controlling of Virtual Service Platforms.

INDENICA D4.2.1

2 Integration of the tool suite with supporting tools

2.1 Goal-based modeling Framework

The elicitation of the requirements of the virtual platforms will be carried out
through IRET (INDENICA Requirements Elicitation Tool). IRET is the Eclipse-based
framework that supports IRENE (INDENICA Requirements ElicitatioN mEthod). IRENE
is a goal-based requirements elicitation approach that blends goals, adaptation
capabilities, and variability into a single coherent solution.

Functional and non-functional requirements are rendered through goals. Adaptation
capabilities, at requirements level, are specified through special-purpose goals called
adaptation goals, and variability is added in the form of textual comments entered
through particular forms. Different goal models (coming from different applications
or from the viewpoint of different stakeholders), or different views on the same
model can then be merged by means of simple syntactic tools that help the user
merge commonalities, highlight differences, and negotiate among the different
alternatives. Interested reader can refer to deliverable [D1.2.1] for a complete
presentation of the approach.

As for the tool, IRET is implemented on top of GMF/EMF and provides the user with
the usual modeling capabilities required to elicit and specify requirements. Users can
adopt an informal approach towards requirements, and thus associate simple textual
comments to the different elements, or a more detailed and formal view on
requirements, and thus also exploit the formal languages supplied by IRENE.

Produced models, that is, requirements specifications, can be used and handled in
two different ways. Since IRET is an Eclipse plug-in, based on EMF, each concept is
materialized in a specific object within the system and can be accessed through the
standard interfaces provided by Eclipse. In addition, models can also be serialized
into XML documents, and then be manipulated through the “well-known” tools.
These two options are also the two ways IRET, and its artefacts, can be integrated
into the complete INDENICA tool-suite.

2.2 Service Platform Infrastructure Repository and EASy-Producer

To support the creation and maintenance of VSPs, the Service Platform
Infrastructure Repository encapsulates design time, deployment time, as well as
runtime aspects of service platforms. When the deployment of a concrete service
platform instance happens, all variabilities with a binding time of at latest the
deployment time have been resolved. The variability resolution is done using the
EASy-Producer tools developed in WP2 in an interactive fashion either during
development, i.e. before deployment, or, for deployment time variabilities during
the deployment process. Thus, at deployment time a partially instantiated variability
model which only contains open variabilities to be resolved at runtime is available.
This partially instantiated model is used to populate the Service Platform
Infrastructure Repository of the service platform instance in order to guide the
monitoring and adaptation engines. The repository runtime component is deployed
with a service platform instance and contains information about the models used to

INDENICA D4.2.1

generate and create the VSP instance, in addition to variability and deployment
configurations. Furthermore, monitoring and adaptation rules, created using the
accompanying ‘Adaptation rule editor’ and ‘Monitoring rule editor’ tools, are stored
in the repository for later use by the monitoring and adaptation engines respectively.
Moreover, monitoring data generated by the VSP instance is stored the runtime
repository for later analysis. The Service Platform Infrastructure Repository is
described in greater detail in Deliverable [D2.3.1].

2.3 Monitoring rule editor
The Monitoring Rule Editor is used to manage monitoring rules stored in the runtime
repository component.

[z XeXo) INDENICA - Monitoring Rules Interface
File Engine

Please enter the informations about the monitoring rules in your system

Engine ID Monitoring Engine 0 s Load Remove

Available Rules Unavailability H Available Input Events

Remove Edit ServicelnvocationEvent
ServicelnvocationFailureEvent
ServiceTest

Rule Name Unavailability

select
1-(
select count(invocations)
from
wp4. events " .Event(eventType="ServicelnvocationFailureEvent’)

Outgoing Events
.win:time(60*6024.0) as invocations

. (Unavailability
select count(invocations)
from wp4. “events ".Event(eventType='"ServicelnvocationEvent’)
win:time(60*60*24.0) as invocations
) as Unavailability
from wp4. " events " .Event

Reset Add Rule

Loaded configuration: Simplelnstance!

Figure 1: Monitoring Rule Editor showing exemplary monitoring rule

Monitoring rules can either be generated from the VbMF or created manually, and
are used by the Monitoring Engines to efficiently and effectively gather runtime data
from the integrated service platforms as well as the VSP instance. The Monitoring
Rule Editor is described in greater detail in Deliverable [D2.3.1].

2.4 Adaptation rule editor

The Adaptation Rule Editor is used to manage adaptation rules stored in the runtime
repository component.

INDENICA D4.2.1

e 00 INDENICA - Adaptation Rules Interface
File Engine

Please enter the informations about the adaptation rules in your system

Engine ID Adaptation Engine 0 e Load Remove
Your Policies

Name.Description GT 0,1. When the value is more than 0.1 perform sample action. GT 0,1

Event import wp4.events.Event Remove Edit Policy
global wp4.adaptation.c AdaptationE ae

Condition: Available Events to Monitor
Sevent : wpd.events.Event((Double)get(Unavailability’)) > 0.1) Unavailability

Action:

System.out.printin(*~-> DROOLS : System KO! currentStatus * +
Sevent.get(Unavailability)).

Event eventOut = new Event(). Available Output Events
eventOut.setEventType("adaptation.SystemKO").
eventOut.set("L ", Sevent.get(Unavailability))
ae.notifyinterface(eventOut).

adaptation.SystemOK
adaptation.SystemKO

Reset Add Policy

Loaded configuration: Simplelnstance
Please use the "ae.notifyinterface(Event eventOut);’ to notify the Adaptation Interfaces!

Figure 2: Adaptation Rule Editor showing exemplary adaptation rule

Similar to monitoring rules, adaptation rules can either be generated from the VbMF
or created manually, and are used by the Adaptation Engines to effectively adapt the
VSP instance and integrated service platforms to changes in the environment in
order to always maintain the best possible performance, availability and/or
scalability according to business requirements. The Adaptation Rule Editor is
described in greater detail in Deliverable [D2.3.1].

2.5 INDENICA Tool Suite for VSP Engineering

The integration of INDENICA View-based Tool Suite (VbMF)[D3.1, D3.3.2] with the
tool suite presented in this document is to leverage VbMF’s view models in order to
(semi-)-automatically generate rules for the monitoring component mentioned in
Section 4 and deployment descriptions for the deployment component mentioned in
Section 3.

2.5.1 Generation of monitoring rules based on SLA modeling

VSPs and service platforms will be monitored at runtime in order to track the health
of the system or to measure certain metrics. The view-based code generation tools
described in [D3.1] and the Runtime View are used to generate rules used by the
Monitoring Engine. In Section 5.5 of [D3.1], we presented in detail how VbMF views
and techniques can support to describe and generate event-based rules that can be
fed to some complex event processing framework such as Esper' for monitoring
systems’ and services’ SLA properties such as availability, execution time, response
time, to name but a few. The main goal of the integration of VbMF and the
monitoring component is to implement a richer low-level view that refines the
concepts of the aforementioned Runtime View and, based on this low-level view,
generates rules and directives in Esper for monitoring the events occurring in VSPs
and/or, partially, generates necessary code for monitoring VSP services.

'http://esper.codehaus.org

INDENICA D4.2.1

2.5.2 Generation of deployment descriptors

VbMF Deployment View provides high-level concepts such as the artefacts to be
deployed and the nodes where the artefacts are hosted. The aforementioned
Deployment View will be refined down to support relevant deployment concepts for
the corresponding runtime environment where INDENICA VSPs are executed, which
is Apache Tuscany for SCA 1.0. In particular, artefacts to be deployed are SCA
composites each of which can comprise a number of service components (i.e., SCA
components). The SCA 1.0 specification [OSOA] allows an SCA Composite and related
artefacts, for instance, its implementation and its required interfaces and
components, to be grouped and deployed in a managed unit called contributions. A
logical group of such SCA contributions that forms an area of business functionality
controlled by a single organization, for instance, whole of a business or a department
within a business [OSOA] can be deployed and managed in a larger unit called SCA
domain. Based on the Deployment View, we can generate SCA composite and
contribution descriptions that assemble corresponding components of the VSP under
consideration and successfully deploy those for executing in an SCA runtime (i.e.,
Apache Tuscany) [c.f. D3.3.2, D5.3.2]

10

INDENICA D4.2.1

3 Tool suite for deployment of Virtual Service Platforms

3.1 Deployment Manager

The virtual service platform has to be deployed in a runtime environment. The
deployment consists thereby of three major steps as described in Deliverable D4.1.
First, all artefacts have to be packaged into a deployable format. Second, these
artefacts have to be uploaded to a (remote) location, so they are available for use in
the runtime. The third and last step of deployment is the registration of the artefacts
in the runtime, so they are known, can be wired together and are available for other
services. For the deployment manager to work, several prerequisites have to be
fulfilled:

Maven. As build management tool, Maven is used. A typical VIP-Project will consist
of a multi-module maven project. Every module in this project describes a
contribution in the sense of SCA, consisting of artefacts, composite descriptions and
contribution metadata.

Tuscany. For INDENICA, the Tuscany SCA Java runtime will be used, implementing
the OSOA SCA specification 1.0. During the deployment process, information about a
running Tuscany instance has to be supplied, e.g. server address, user credentials
etc.

SCA Deployment Configuration. Information about every SCA composite has to be
supplied. Tuscany needs every composite to be run on a single Node (a Tuscany
runtime itself). These composites have to be registered at some Endpoint, so its
services are made available. This information is supplied as parameters in the maven
descriptor (pom.xml).

The deployment process is initiated with the command mvnindenica:deploy,
run at the parent project after the packaging phase. Every child project then will be
deployed as follows: The artefacts are uploaded to the Tuscany server and are
started in the same runtime. After uploading, the artefacts are scanned for
contribution metadata and all deployable composites are registered in the Tuscany
domain. For every composite, a node will also be registered and started. The address
of the node will thereby be determined by the SCA deployment configuration.

3.2 Example of the Deployment Process

The following example describes a sample warehouse application that offers several
services, implemented in java. The whole setup consists of two projects, the maven
parent project and a maven project for compiling and packaging the services. Details
about the Tuscany platform to which to deploy this application are provided in the
pom.xml of the parent project:

<project>

<modelVersion>4.0.0</modelVersion>

<groupld>sca.indenica</groupld>

<artifactId>parent</artifactId>

<packaging>pom</packaging>

<version>1.0</version>

11

INDENICA D4.2.1

<name>parent</name>

<modules>
<module>../warehouse</module>
</modules>

<build>

<plugins>

<plugin>
<groupId>com.sap.research</groupId>
<artifactId>indenica-maven-plugin</artifactId>
<version>1.0</version>
<configuration>

<tuscany>
<server>127.0.0.1</server>
<mgmtPort>9990</mgmtPort>
</tuscany>

</configuration>

</plugin>

</plugins>

</build>

</project>

The domain server as well as the port of the management interface has to be
described in the configuration part of the indenica-maven-plugin (in the parent
project). This implicitly configures the Tuscany target for every child module of this
maven build.

As described earlier, every composite will run in a separate node. The configuration
of this node will be expressed in the pom.xml of every child module. The following
section of the pom.xml of the warehouse module configures the endpoints for the
services:

<plugin>
<groupIld>com.sap.research</groupId>
<artifactId>indenica-maven-plugin</artifactId>
<version>1.0</version>
<configuration>

<scaNode>

<ports>

<catalogs>8101</catalogs>
<currency>8102</currency>

</ports>

</scaNode>

</configuration>

</plugin>

The described services must correspond to the defined names for each composite.
This configuration is only necessary, if composites exist. The SCA composite
descriptions have to reside in the root of the archive to be deployed. A typical
packaged Indenica SCA project structure looks like the following example:
warehouse.jar

}catalogs.composite

lcurrency.composite
F warehouse.html

12

INDENICA D4.2.1

——META-INF
I MANIFEST.MF
Lsca-contribution.xml or sca-contribution-generated.xml

services
rCart.class
rCatalog.class
rTtem.class
rOrder.class
FShoppingCartImpl.class
rTotal.class
rWarehouse.class

|

L _currency
FCurrencyConverter.class
LCurrencyConverterImpl.class

Important for the deployment process are the bold files. The deployment manager
will process each of these files to gain enough information for the deployment

activity.

Running the mvnindenica:deploycommand results in the deployment of the
two composites catalogs and currency to the nodes with the endpoints
127.0.0.1:8101 rsp. 127.0.0.1:8102.

To undeploy the composites, run the mvnindenica:undeploy command on
the parent project.

13

INDENICA D4.2.1

4 Tool suite for monitoring of Virtual Service Platforms

4.1 SPASS-meter

SPASS-meter” is a flexible resource monitoring framework which enables observing
the resource consumption of individual parts of a (Java) software system at runtime.
Regarding resources, SPASS-meter supports the collection of runtime information
about execution time (CPU and response time), memory consumption (allocation
and use), file transfer and network transfer. Typical resource monitoring tools
provide either large amounts of detailed information which is not related to
individual services (e.g. InsECT[CO04], J-RAF2 [BH04] or OpenCore[JlI12]) or which is
aggregated only on system level (e.g. JMX [008]) representing summarized effects of
all running services. Avoiding such superfluous collection, and, thus, reducing the so
called monitoring overhead, is one of the main aims of SPASS-meter. SPASS-meter
and its architecture have already been discussed in D4.2.1. In this section, we will
summarize SPASS-meter here only briefly and discuss the improvements over D4.2.1.

Therefore, SPASS-meter must be configured for a specific system under monitoring
(SUM, e.g., a service platform instance) to gather information on the services of
interest. The configuration may be given in terms of source code annotations or as
an external XML file. Depending on that configuration, SPASS-meter focuses
particularly on the resource consumption of the specified parts of the SUM and, if
configured appropriately, it collects also information about the SUM as a process or
on the whole execution environment in order to support deriving relative statements
about the SUM. SPASS-meter collects its information based on raw data obtained
from an instrumented SUM, more precisely from a SUM modified for monitoring
according to the SUM-specific configuration. Based on that configuration, SPASS-
meter may preparethe SUMprior to, at runtime or in a mixed way. Each of these
three instrumentation modesmay be beneficial with respect to overhead and
applicability to certain (limited) environments. Instrumentation prior to runtime
avoids runtime instrumentation overhead but cannot exploit information known
only at runtime, e.g., the actual target of polymorphic method calls. Instrumentation
at runtime can take such information into account and even optimize the actual
instrumentation dynamically. Such runtime optimization is done by SPASS-meter to
significantly improve the performance of monitoring the memory consumption of
the SUM. Therefore, it dynamically adjusts the instrumentation so that only relevant
parts of the SUM are under observation. However, dynamic instrumentation
consumes also some (additional) resources, thus, causing runtime overhead. In
service-oriented systems, the mixed mode may be applied, e.g., static
instrumentation for the platform and dynamic instrumentation for dynamically
loaded services which are unknown at static instrumentation time.

2 SPASS is the acronym for Simplifying the Development of Adaptive Software Systems and SPASS-meter is one of
the foundational building blocks of our approach in this field. In German, the term “Spass” means “fun” and
points to the tons of fun the developers had and will have while realizing the approach and its tooling.

14

INDENICA D4.2.1

A
= 164 * 3 N
£ hd
= ¢ b
§159 3 3
154 -
149
¥ E 3
144 -~ T T T 1
& & » ¢ gt » &
‘$ Q(.vo (}O‘\Q’ @Q\# &Q"\ Q:@r\ \\V‘:" \\8\
i S 57 & 2 g
o Q® s (.“';3 & @
o S v < &
&§ { =
<X v
SN

Figure 3: Execution time overhead comparison in terms of SPECjvm2008
operations per minute

In the third year of INDENICA, SPASS-meter has been optimized in order to reduce
the monitoring overhead. Basically, strategies such as explicit trade off making in the
implementation or pre-aggregation at very early stages of the data collection helped
reaching that goal. Further, we analysed the performance of SPASS-meter under load
using the well-known (and freely available) SPECjvm2008 benchmark suite® as
experimental subject. Thereby, we compared SPASS-meter with recent monitoring
tools such as OpenCore or Kieker running under the same conditions in the same
environment. However, there are various differences between OpenCore[Jl12],
Kieker (e.g., [HWH12])and SPASS-meter, in particular regarding the approach, the
configuration possibilities, the online analysis capabilities and the offered resources
to be monitored (details can be found in [ES12]). Therefore, we compared the tools
with respect to their common capabilities, i.e., execution time monitoring. For the
experiments, we used a recent Dell Optiplex 790MT running Ubuntu Linux 12.04.1 64
bit in server configuration and JDK 1.6.0_34 64 bit as Java environment. Our analysis
[ES12]*shows that the commercial tool OpenCore runs below 1% (two similar
configurations in Figure 3), Kieker around 1.2% and SPASS-meter at 2.8% (“SPASS-
meter” in Figure 3) execution time overhead. The increased overhead of SPASS-
meter is mainly due to the complex runtime aggregation capabilities required to
determine the resource consumption of individual parts of the SUM. Compared from
the output perspective, SPASS-meter produces a handy and focused summary of
some Kbytes while the other two tools produce large log files for offline analysis (in
the order of Mbytes for OpenCore and in the order of GBytes by Kieker). Further,
monitoring network and file transfer with SPASS-meter leads to similar overheads,
i.e., 2.8% execution time overhead (not shown in Figure 3), while memory allocation
and memory use can be observed at total 10.8% (“SPASS-meter all”, and “SPASS-
meter all ASM” in Figure 3) just instrumenting and monitoring all memory

3http://www.spec.org/jvm2008/

‘A journal artical about SPASS-meter, its approach, its architecture and an even more detailed comparative
analysis is under submission.

15

INDENICA D4.2.1

consumptions or 3.9% runtime overhead using dynamic optimization (“SPASS-meter
all dyn” in Figure 3). Regarding memory consumption overhead, all three tools
operate approx. 0.5% overhead.

The documentation about usage, installation and setup of the SPASS-meter is
available as Appendix 2: SPASS-meter Quick Guide to this document.

4.2 ECoWare

ECoWare, which stands for Event Correlation Middleware, is a distributed data
aggregation and persistency tool. In INDENICA ECoWare is used to provide means to
reason on a complex service-based system, by aggregating raw data collected from
its multiple layers. It allows us to correlate behaviours being seen in the Service
Platform Environment with behaviours being seen at the underlying virtual resources
layer.

A typical ECoWare deployment (see Figure 4) consists of four different types of
components: (i) the execution environments for which we want to collect run-time
data (together with appropriate probes), (ii) a series of processors for providing the
actual data aggregations, (iii) a persistency database, and (iv) theECoWare
Dashboard for visualizing the aggregated data. The components collaborate through
a RabbitMQ Publish and Subscribe (P/S) event bus for which ECoWare defines a
normalized event format. In order to manage the normalized format and to
collaborate properly, each component is required to implement appropriate
RabbitlnputAdapters and RabbitOutputAdapters.

m
Virtualized Java Service Platform Q
Resources VMs Environment =
Visualization)
MySQL Tool @
Probe Probe Probe Persistency
Output Output Input Output Input
Adalpter Adalpter Output ;Adapter Adaépter Adapter Ada4pter
; i : | ! |
\ RabbitMQ P/S Bus
1]]] l j
Input Output Input Output Input Output
Adapter Adapter 000 Adapter || Adapter 000 Adapter || Adapter
KPI Processor Aggregator Analyzer

Figure 4: Architecture of the ECoWare Framework.

The execution environments can be of any kind. For example, we could be probing
the Service Platform Environment, the Java VMs being used, and the underlying
virtualized resources. This allows us to aggregate information coming from all three
of these layers, with the goal of incrementally constructing comprehensive
knowledge of the running system along its multiple layers.

Data processing is provided by three different kinds of processors QoS Processors,
Aggregators, and Analyzers. These processors subscribe to events on the P/S bus,
execute their internal logic, and publish their results back to the bus. This allows
them to be strung together to obtain the aggregated information we desire. Thanks

16

INDENICA D4.2.1

to this loose coupling ECoWare can be considered very extensible. In the future we
will investigate a stronger integration with the other monitoring tools produced in
the context of the Indenica project.

QoS Processors and Aggregators are built using Esper, a component for complex
event processing activities. Esper components execute queries defined using an
Event Processing Language (EPL). EPL is an SQL-like language for developing event
conditions, correlations, and aggregations. The difference between SQL and EPL is
that, instead of running queries against stored data, Esper stores queries and runs
data through them. The execution model is thus continuous rather than limited to
the exact moment at which the query is submitted. Analyzers are built using a simple
assertion analyzer inspired by our previous work on WSColL [WSCol]. WSCol was
developed for the definition of functional monitoring of BPEL processes, and has
been modified to receive data that are not in XML form.

The ECoWare dashboard is a Java Desktop application that system managers can use
to visualize data collected through ECoWare. It supports both live charting, and
online and offline violation drill-down analysis. Online and offline drill-down analysis
allows managers to choose a violation, and visualize the multiple data collections
that were triggered by that event. Violations, as well as the correlated data are
collected on-demand from ECoWare's persistency database, where they are
automatically collected every time an aggregator is triggered. Like for certain
security cameras, we currently store data for 24 hours, and periodically cleanse the
data that are no longer needed.

New features in ECoWare

The main novel contribution to ECoWare itself is that it now has a simple declarative
language called mICCL that can be used to identify the data we want to collect from
the running system, how we want to aggregate them to build higher-level
knowledge, and how we want to analyse the data to discover undesired behaviours.
mICCL stands for ,Multi-layer Collection and Constraint Language”. (mICCL currently
only supports SCA-based systems. In the future, it will be extended to support other
kind of software systems.)

mICCL is based on the assumption that data are described in terms of Service Data
Objects (SDOs). A Service Data Object is a language-agnostic data structure typically
used to facilitate the communication between diverse service-based entities. A data
object consists of a set of named properties. Each property can be either single- or
multi-valued (i.e., an array), and can have either a primitive (i.e., a number, a string,
or a Boolean) or complex data-type (i.e., a service data object). mICCL allows for 2
kinds of data collections: messages and indicators.

Message collection is all about capturing the messages that are sent or received by a
SCA component. In mICCL we need to identify a location using the syntax

locName = [before | after] endpoint;

where locName is a location name chosen by the designer, before and after are
mICCL keywords, and endpoint is a (methodName, [serviceName | referenceName],
componentName) triple that uniquely identifies a method in a SCA-based system. At

17

INDENICA D4.2.1

this point a message collection is expressed as
aliasName = collect(locName);

where aliasName is an alias that can be used to refer to the collected SDOs, and
collect is a function that takes a location as its sole parameter. The SDO contains the
collected message, as well as the aliasName and location values used in the
collection specification. On top of that, it also contains a timestamp indicating
“when” the message was sent or received by the service runtime2, and an
instancelD, that is a unique ID that identifies the specific service call. Corresponding
request and response messages share this unique ID.

Indicator Collection is all about collecting periodic information, i.e., information that
is not triggered by any specific service call. An indicator can be a KPI (Key
Performance Indicator) or a Rl (Resource Indicator). In this case we use the following
syntax:

aliasName = collect(indicatorName, servicelD, outputRate, pastWindow, property);

where aliasName is the alias that will be used to refer to the collected SDOs.
indicatorName is the name of the indicator we want to collect, while servicelD
identifies the service for which we are requesting the indicator. In case we are
collecting a KPI, the servicelD is an endpoint triple, like the ones defined for message
collection but without the before or after keywords. In case we are collecting a R,
the servicelD is the unique ID of a virtual machine surrounded by brackets. The
outputRate identifies the frequency with which a new indicator value should be
produced, while the pastWindow parameter specifies the amount of past time to
take into consideration when calculating the new value. A value, and a time unit that
can be “seconds”, “minutes”, or “hours”, defines the pastWindow parameter. Finally,
property is a mICCL data analysis expression that is used by indicators that, in order
to be calculated, need to know how many SDOs, collected in the last pastWindow,

satisfy a given property

Currently mICCL supports four KPIs (i.e., avgRT, arrivalRate, throughput, and
reliability), and fifteen RlIs (i.e., cpuldle, cpuUser, and cpuSystem for CPU activity;
diskOctets and diskOps for disk activity; memUsed, memBuffered, memCached, and
memFree for memory activity; and netlncoming, netOutgoing, netPacketsTX,
netPacketsRX, netErrorsTX, netErrorsRX for network activity).

Once the SDOs have been collected we can aggregate them. Since different SDOs are
collected at different times, the aggregation needs to specify “when” it should be
achieved. We solve this issue by requiring that the designer specify a
“primary/triggering” SDO. The syntax we use is:

aliasName = aggregate(primary, list);

where aliasName is the alias of the new aggregated SDO, primary is a previously
defined alias, and list is a comma-separated list of previously defined aliases. Every
time the framework sees a new primary SDO, it automatically collects the last known

18

INDENICA D4.2.1

SDO of each secondary type. If the designer wants a past window of SDOs for a given
secondary type, this can be achieved by appending window(interval) to the
secondary SDO type.

mICCL also provides means to analyse certain properties of the collected SDOs. In
mICCL we refer to a SDO’s internal properties appending method get(propertyName)
to the SDO’s alias. Depending on the type of property we extract, mICCL also
provides a number of methods for further manipulation, such as absolute value and
square root for numbers; and substring, length and replace for strings. If the SDO is
an array, we can obtain the length of the array, the i-th value in the array, or a subset
of all the values that satisfy a given property. In this case the property can refer to
the elements in the array using a pre-defined elem alias. Finally, if the SDO is an array
of numbers we can obtain the sum, the average, or the minimum or maximum
values of the array. mICCL allows us to define an expression that predicates over the
properties of SDOs. The expression is expressed using a slight variation of the WSColL
language. We use the following syntax:

(prop) ::= =(prop) | (prop)&&(prop) | (prop)li{prop) | (array). (quant) ((prop)) |
(term)(rop)(term)

(term) ::= (prim) | (term)(aop)(term) | (const)

(rop) ::=<[<[==2[>

(quant)::= forall | exists

(aop) ::=+[=[x[+[%

where prim is a primitive value (i.e., number, string, or boolean) extracted from a
SDO, and array is an array of primitive values, all of the same type. Boolean,
relational (rop), and arithmetic operators (aop) follow their usual definitions. forall
and exists state that a property should hold for all, or for at least one, of the values in
an array. In this case the property can refer to the elements in the array using an
implicit Selem alias.

Like aggregation, analysis also requires a “primary/trigger” SDO, so that it can know
when all the data needed for the analysis is available, and when it should activate.
The syntax is therefore

aliasName = evaluate(primary, expression);

where aliasName is the alias that is used to identify the SDO that is created
every time expression holds, while primary is a previously defined alias that is
used within expression. When the primary alias is collected, the evaluation of
the expression is triggered. Examples of how we use mICCL can be found in
the new version of Appendix 1.

Integration with other project contributions

During the third year of the Indenica project we have made two contributions that
go in the direction of strengthening the integration with the other project
contributions. The first is that we have removed the Siena P/S bus from ECoWare’s
architecture, and replaced it with a RabbitMQ bus. The reason for this is that this

19

INDENICA D4.2.1

event distribution bus is being used by the other partners as well. This meant
changing all our Siena Input and Output Adaptors to RabbitMQ adapters.

In the previous year, Resource Indicators were collected from a VM using a third-
party tool called collected. Now, we have introduced new Resource Indicators that
focus on the Java VM that is running the software system. This allows us to gather
information from a layer that is intermediate between the actual SCA application,
and the virtualized resources that are used for the system’s provisioning. The data
coming from the JVM are collected using SPASS-meter. This means we can now
collect data about execution times (CPU and response time), memory consumptions
(allocation and use), file and network transfers. Currently, the SPASS-meter resource
indicators are not supported inside mICCL. They are, however, supported through
XML-based configuration.

Furthermore, we have used ECoWare in the context of the Remote Maintenance
System Platform. To do this we developed specific probes that can be used to
capture the interactions that occur with the platform’s core, which consists of Java
servlets deployed to a JBoss Application Server. We also were able to capture
information regarding the interactions that servlets had with the backend database.
More information regarding the use of ECoWare in the Remote Maintenance System
Platform can be found in Deliverable D5.4.

Online presence

During the third year we also developed an online presence for ECoWare. We have
developed a complete tutorial on how to install ECoWare, and how to use it. The
tutorial consists of a five step tour of ECoWare’s main features, and allws developers
to be up and running within minutes. The publicly available version of ECoWare also
provides full JavaDoc documentation of the source code.

To increase ECoWare’s visibility we published a paper in the IEEE 20th International
Conference on Web Services (ICWS 2013) entitled , Event-based Multi-level Service
Monitoring” [ECoWare].

4.3 MONINA

MONINA (MONitoring, INtegration, Adaptation) is a DSL for concise, easy and
reusable specification of platforms integrated into a VSP, along with monitoring and
adaptation rules governing their behaviour. The language is developed using the
Xtext® framework, allowing for tight integration in the Eclipse platform. The plugin
offers syntax highlighting, as well as several automated sanity checks to ease system
specification. The language plugin is furthermore integrated into the overall Indenica
tool suite, allowing for the usage of existing system models stored in the
infrastructure repository. Future versions of the plugin will offer a graphical
abstraction in addition to the textual DSL for increased simplicity and ease of use.

Figure 5shows a simple definition for a service platform to be integrated into a VSP.
The ‘ApplicationServer’ component emits ‘RequestFinished’ events after processing
requests and supports a ‘DecreaseQuality’ action, which can be triggered by

5http://www.ecIipse.org/Xtext/

20

INDENICA D4.2.1

adaptation rules. Emitted events are processed by the ‘AggregateResponseTime’
query, which aggregates them over five minutes, creating an
‘AverageProcessingTime’ event. This event is converted to a fact, which might trigger
‘DecreaseQualityWhenSlow’ adaptation rule. The physical infrastructure consists of
hosts ‘vm1’ and ‘vm2’. Runtime elements without defined costs are assigned default
values, which are refined at runtime. In the following we will discuss the most
important language constructs of MONINA in more detail.

event RequestFinished {

request_id : Integer host vml { capacity 128 }
processing time_ms : Integer host vm2 { capacity 256 }
}
query AggregateResponseTimes {
event AverageProcessingTime { from ApplicationServer
processing time_ ms : Integer event RequestFinished as e
emit AverageProcessingTime (
avg(e.processing_ time_ms))
action DecreaseQuality { window 5 minutes
amount : Double }
}
fact {
component ApplicationServer { from AverageProcessingTime
endpoint { }
at ”/app_server”
emit RequestFinished rule DecreaseQualityWhenSlow {
action AdjustQuality from AverageProcessingTime as f
when f.processing time ms > 2000
host vml execute ApplicationServer
cost 32 .DecreaseQuality (5)
} }

Figure 5: Sample MONINA System Definition

event Monitoring events are described listing attributes contained in emitted
messages. Events are then used in component definitions, monitoring query
declarations, as well as facts.

fact Facts constitute the knowledge base for adaptation actions. Fact definitions
reference an event type and a partition key.

action Similar to events, adaptation actions list all their valid parameters. Actions
are used in component definitions as well as adaptation rules.

component A component definition references all monitoring events the platform
can emit (including their frequency), all adaptation actions that can be
performed, as well as its processing requirements. Furthermore, it is
correlated with a concrete instance of the component in question at
deployment.

query Monitoring queries are used to define the aggregation, filtering and
enrichment of emitted monitoring data in a CEP fashion. Monitoring rules will
either emit complex aggregated events to be consumed by other monitoring
rules, directly issue adaptation actions, or emit facts to be used in adaptation
rules.

rule Adaptation rules allow for the usage of complex business management rules
to govern system behaviour. Monitoring rules emit facts to be used for

21

INDENICA D4.2.1

reasoning over the current system state. Adaptation rules can either publish
new facts or issue adaptation actions.

host Hosts represent possible deployment locations of components, monitoring
queries and adaptation rules. A host description contains its processing
capacity.

4.3.1 Event

In our work, we follow the event-based interaction paradigm. Events are emitted by
components to signal important information. Furthermore, events can be emitted by
monitoring queries as a result of the aggregation or enrichment of one or more
source events.

Figure 6 shows a simplified grammar of the event construct in Extended Backus-Naur
Form (EBNF). Event declarations start with the event keyword and an event type
identifier. As shown in the figure, an event can contain multiple attributes, defined
by specifying name and type separated by a colon. Currently, supported event types
are a variety of Java types such as String, Integer, and Decimal, and Map<?, ?>.

(event) = ‘event’ (ID) ‘{’ (attr)* ‘}’
(attr) = (attr-name) “:’ (type)
(attr-name) = (ID)

Figure 6: Simplified Event Grammar in EBNF

Since listing all available event types for every application would be a tedious and
error-prone task, we automatically gather emitted event types from known
components to improve reusability and ease of use. This procedure is described in
more detail in Section 4.3.4.

4.3.2 Action

Complementary to monitoring events described above, adaptation actions are
another basic language element of MONINA. Adaptation actions are invoked by
adaptation rules and executed by corresponding components to modify their
behaviour. Figure 7 shows a simplified grammar of the action construct in EBNF.
Action declarations start with the action keyword followed by the action type
identifier. Furthermore, actions can take parameters, modelled analogously to event
attributes shown in Figure 6.

(action) n= ‘action’ (ID) ‘{’ (attr)* ‘}’

Figure 7: Simplified Action Grammar in EBNF

Similar to events, adaptation actions offered by known components do not need to
be specified manually, but are automatically gathered from component
specifications, as mentioned in Section 4.3.4.

4.3.3 Fact

Facts constitute the knowledge base for adaptation rules and are derived from
monitoring events. A fact incorporates all attributes of the specified source event for

22

INDENICA D4.2.1

use by adaptation rules. Figure 8 shows a simplified grammar of the fact construct in
EBNF. Fact declarations start with the fact keyword and an optional fact name. A fact
must specify a source event type that is used to derive the fact from. Furthermore,
an optional partition key can be supplied. If the fact name is omitted, the fact will be
named after its source event.

(fact) ‘fact’ (ID)? ‘{’ (ID) (partition-key)? ‘}’
(partition-key) = ‘by’ (ID)

Figure 8: Simplified Fact Grammar in EBNF

The partition key construct is used to enable the creation of facts depending on
certain event attributes, allowing for the concise declaration of multiple similar facts
for different system aspects. For instance, a fact declaration for the event type
ProcessingTimeEvent that is partitioned by the component id attribute will
create appropriate facts for all encountered components, such as
ProcessingTime (Componentl), . . . , ProcessingTime (ComponentN). In
contrast,a fact declaration for the MeanProcessingTimeEvent without partition
key will result in the creation of a single fact representing the system state according
to the attribute values of incoming events.

4.3.4 Component

A component declaration incorporates all information necessary to integrate third-
party system into the Indenica infrastructure. Fig. 5 shows a simplified grammar of
the component construct in EBNF. Component declarations start with the
component keyword and a component identifier. A component specifies all
monitoring events it will emit with an optional occurrence frequency, supported
adaptation actions, as well as a reference to the host the component is deployed to.

(component) = ‘component’ (ID) ‘{’ (metadata)? (c-elements)* (host-ref) ‘}’
(metadata) = (‘vendor’ (STRING))? (‘version’ (STRING))? ...
(c-elements) ::= (endpoint) | (refs)

(refs) = (event-ref) | {action-ref)

(action-ref) = ‘action’ (ID)

(event-ref) = ‘event’ (ID) (frequency)?

(endpoint) = ‘endpoint’ (ID)? ‘{’ (e-addr) (refs)* ‘}’

(frequency) = ‘every’ (Decimal) ‘seconds’ | (Decimal) ‘Hz

(host-ref) ‘host’ (ID)

Figure 9: Simplified Component Grammar in EBNF

For brevity, further elements such as endpoint addresses, are omitted in the
presented grammar snippet but are included in the implementation.

As mentioned before, it is usually not necessary to manually specify component,
action, and event declarations. The Indenica infrastructure provides for means to
automatically gather relevant information from known components through the
control interface that is part of the runtime infrastructure.

23

INDENICA D4.2.1

4.3.5 Monitoring Query

Monitoring queries allow for the analysis, processing, aggregation and enrichment of
monitoring events using CEP techniques. In the context of the Indenica project we
provide a simple query language tailored to the needs of the specific solution.

A simplified EBNF grammar of the monitoring query construct is shown in Figure 10.
A query declaration starts with the query keyword and a query identifier.
Afterwards, an arbitrary number of event sources for the query is specified using the
from and event keywords to specify source components and event types. A query
then specifies any number of event emission declarations, denoted by the emit
keyword followed by the event type and a list of expressions evaluating the attribute
assignments of the event to be emitted. For brevity we omit the specification of the
(cond-expression) clause that represents a SQL-style conditional expression. Queries
can be furthermore designed to operate on event stream windows using the
window keyword, specifying either a number of events to create a batch window or
a time span to create a time window. Conditions expressed using the where keyword
are used to limit query processing to events satisfying certain conditions, using the
conditional expression construct mentioned above. Finally, queries can optionally
indicate the rate of incoming vs. emitted events, as well as an indication of required
processing power. These values are user-defined estimations in the initial setup, and
are adjusted continuously during runtime to accommodate changes in the
environment.

(query) n= ‘query’ (ID) ‘{’ ((sources) | (emits))*
(window)? {(condition)? (io-ratio)? {cost)? ‘}

‘source’ (ID) (*,’ (ID))*
‘event’ (ID) (¢, (ID))*

‘emit’ (ID) ({attr-emit)*)*

s

(sources)

emits)

attr-emit) (cond-expression) (‘as’ (ID))?

window) ‘window’ ({batch-window) | (time-window))

(Integer) ‘events’

time-window) (Integer) (‘seconds’ | ‘minutes’ | ‘days’|...)

condition) ‘where’ (cond-expression)

io-ratio) ‘ratio’ (Decimal)

(
(
(
(batch-window) ::
(
(
(
(cost) = ‘cost’ (Decimal)
Figure 10: Simplified Monitoring Query Grammar in EBNF

In addition to the query construct presented above, the language infrastructure
allows for the integration of other CEP query languages, such as the Esper Event
Processing Language® (EPL) if necessary.

6http://esper.codehaus.org/esper-4.10.O/doc/reference/en—US/htmI/epI clauses.html

24

INDENICA D4.2.1

4.3.6 Adaptation Rule

Adaptation rules employ a knowledge base consisting of facts to reason on the
current state of the system and modify its behaviour when necessary using a
production rule system. Figure 11 shows a simplified grammar of the adaptation rule
construct in EBNF. A rule declaration starts with the rule keyword and a rule
identifier. After importing all necessary facts using the from keyword, a rule contains
a number of when-statements where the condition evaluates a (cond-expression) as
described above, referencing imported facts, and the then block specifies a number
of adaptation action invocations including any necessary parameter assignments.
Optionally, a rule can indicate processing requirements (cf. Figure 10) that will be
adjusted at runtime.

rule)

‘rule’ (ID) ‘{’ ({r-sources))+ (stmt)+ (cost)?‘}’

‘from’ (ID) (‘as’ (ID))?

r-sources)

‘when’ (cond-expression) ‘then’ (action-expr)+

action-expr) (ID) * (’ {(action-attr) (‘,’ (action-attr))* ‘)’

(
(
(stmt)
(
(action-attr) ::= (cond-expression) (‘as’ (ID))?

Figure 11: Simplified Adaptation Rule Grammar in EBNF

As with monitoring queries, the adaptation rule module is tailored to the
requirements of the Indenica infrastructure but also allows for the usage of different
production rule languages, such as the Drools [7] rule language, if more complex
language constructs are required.

4.3.7 Host

Hosts represent the physical infrastructure available for deployment of
infrastructure components. Figure 12 shows a simplified grammar of the host
construct in EBNF. A host declaration starts with the host keyword and a host name.
An address in the form of a fully qualified domain name (FQDN) or an IP address can
be supplied. If no address is given, the host name will be used instead. Furthermore,
a capacity indicator is provided that will be used for deployment decisions.

(host) = ‘host’ (ID) ‘{’ (address)? {capacity) ‘}’
(address) = (fqdn) | (ip-address)
(capacity) = ‘capacity’ (Decimal)

Figure 12: Simplified Host Grammar in EBNF

4.4 Monitoring engines

The INDENICA infrastructure provides an extensible platform monitoring framework
employing novel concepts for organizing and layering monitoring concerns to allow
for efficient distribution of software components to reduce communication
overhead. Furthermore, sophisticated processing methods, such as data ageing,

25

INDENICA D4.2.1

allow for the effective usage of historical system health data while keeping
transmission and storage overhead minimal.

-

Repository

-Monitoring Rules
-Monitoring Capabilities

=2 e G2 e

Monitoring
Interface

Monitoring
Interface

Monitoring
Interface

é InformationFlow
Figure 13: Runtime Infrastructure Architecture: Monitoring Overview

The monitoring infrastructure is instantiated according to configuration directives
deployed to the repository (cf. Section 2.2) by creating all necessary monitoring
engines and establishing connections to the integrated service platforms.
Additionally, connections between monitoring engines and according adaptation
engines are set up.

4.5 Domain-specific events

Events monitored in the VSP come from different service platforms. In order to allow
efficient monitoring of events the necessary unification of these events has to be
done. INDENICA proposes an extensible event model to which all underlying
platforms need to be compliant with to catch all messages. The team identified three
major points of unification.

First is the format that is used to define messages, the second is the internal
structure of these messages and third is the type of messaging technique that is used
to gather events. Events that are sent by the underlying service platforms may be
written in different formats such as JSON [JSON], XML [XML], key-value list, etc. and
several mechanisms can be used to get them, e.g. publish-subscribe, polling,
streaming, etc.

26

INDENICA D4.2.1

4.5.1 Events in Remote Maintenance System

The first Use Case example that we use is the Remote Maintenance System which
uses XML-based events which are sent to the monitoring engine using Rabbit MQ
message broker.

XML Schema

Generated events are compliant with the following XML Schema:

<?xmlversion="1.0"encoding="UTF-8"?>
<xs:schemaxmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:elementname="event"type="EventType" />

<xs:complexTypename="EventType">

<xs:sequence>

<xs:elementname="eventId"type="xs:long"minOccurs="1"/>

<xs:elementname="eventName"type="xs:string"minOccurs="1"/>

<xs:elementname="timestamp"type="xs:dateTime"
minOccurs="1"/>

<xs:choice>

<xs:elementname="request"type="RequestType" />

<xs:elementname="response"type="ResponseType" />

<xs:elementname="systemParameters"
type="SystemParametersType" />

</xs:choice>

<xs:elementname="errorMessage'type="ErrorMessageType"
minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexTypename="RequestType">
<xs:sequence>
<xs:elementname="requestId"type="xs:long"minOccurs="1"/>
<xs:elementname="adminId"type="xs:string"minOccurs="0"/>
<xs:elementname="userSipId"type="xs:string"minOccurs="0"/>
<xs:elementname="cameraSipId"type="xs:string"minOccurs="0"/>
<xs:elementname="cameraIpAddress"type="xs:string"minOccurs="0"/>
<xs:elementname="receiverSipId"type="xs:string"minOccurs="0"
maxOccurs="unbounded" />
<xs:elementname="callParameters"type="xs:string"minOccurs="0"/>
<xs:elementname="sessionId"type="xs:string"minOccurs="0"/>
<xs:elementname="userStatusId"type="xs:integer"minOccurs="0"/>
<xs:elementname="xPosition"type="xs:double"minOccurs="0"/>
<xs:elementname="yPosition"type="xs:double"minOccurs="0"/>
<xs:elementname="horizontalAngle"type="xs:double"minOccurs="0"/>
<xs:elementname="verticalAngle"type="xs:double"minOccurs="0"/>
<xs:elementname="zoom"type="xs:double"minOccurs="0"/>
<xs:elementname="targetUserSipId"type="xs:string"minOccurs="0"
maxOccurs="unbounded" />
<xs:elementname="videoSourceSipId"type="xs:string"minOccurs="0"/>
<xs:elementname="subscriptionId"type="xs:string"minOccurs="0"/>
<xs:elementname="startTime"type="xs:dateTime"minOccurs="0"/>
<xs:elementname="stopTime"type="xs:dateTime"minOccurs="0"/>
<xs:elementname="textMessage"type="xs:String"minOccurs="0"/>
<xs:elementname="userGroup"type="xs:string"minOccurs="0"/>
<xs:elementname="user"type="UserData"minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

<xs:complexTypename="ResponseType">

<xs:sequence>
<xs:elementname="requestId"type="xs:long"minOccurs="1"/>
<xs:elementname="responseld"type="xs:long"minOccurs="1"/>

27

INDENICA D4.2.1

<xs:elementname="sessionId"type="xs:string"minOccurs="0"
yp
maxOccurs="unbounded" />
<xs:elementname="userSipId"type="xs:string"minOccurs="0"/>
P yp
<xs:elementname="userStatusId"type="xs:intiger"minOccurs="0"/>
yp
<xs:elementname="user"type="UserData"minOccurs="0"
ypP
maxOccurs="unbounded" />
<xs:elementname="camera"type="CameraData"minOccurs="0"
YypP
maxOccurs="unbounded" />
<xs:elementname="subscriptionId"type="xs:string"minOccurs="0"/>
P yp
<xs:elementname="£fileUrl"type="xs:string"minOccurs="0"/>
yp g
<xs:elementname="fileParameters"type="xs:string"minOccurs="0"/>
yp
</xs:sequence>
</xs:complexType>

<xs:complexTypename="SystemParametersType">
<xs:sequencemaxOccurs="unbounded" >
<xs:elementname="parameter"type="xs:string"minOccurs="1"/>
<xs:choice>
<xs:elementname="valueInt"type="xs:integer" />
<xs:elementname="valuelLong"type="xs:long" />
<xs:elementname="valueDouble"type="xs:double" />
<xs:elementname="valueDate"type="xs:dateTime" />
<xs:elementname="valueString"type="xs:string" />
<xs:elementname="valueBoolean"type="xs:boolean" />
</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexTypename="UserData">
<xs:sequence>
<xs:elementname="userId"type="xs:string"minOccurs="0"/>
yp
<xs:elementname="userSipId"type="xs:string"minOccurs="0"/>
P yp
<xs:elementname="userName"type="xs:string"minOccurs="0"/>
yp
<xs:elementname="userPasswd"type="xs:string"minOccurs="0"/>
yp
<xs:elementname="userGroup"type="xs:string"minOccurs="0"/>
P typ
<xs:elementname="statusId"type="xs:integer"minOccurs="0"/>
yp
<xs:elementname="userParameters"type="xs:string"minOccurs="0"/>
yp
<xs:elementname="ip"type="xs:string"minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:complexTypename="CameraData">

<xs:sequence>
<xs:elementname="cameraSipId"type="xs:string"minOccurs="0"/>
<xs:elementname="cameraIpAddress"type="xs:string"minOccurs="0"/>
<xs:elementname="xPosition"type="xs:double"minOccurs="0"/>
<xs:elementname="yPosition"type="xs:double"minOccurs="0"/>
<xs:elementname="verticalAngle"type="xs:double"minOccurs="0"/>
<xs:elementname="horizontalAngle"type="xs:double"minOccurs="0"/>
<xs:elementname="zoom"type="xs:double"minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:complexTypename="ErrorMessageType'">

<xs:sequence>
<xs:elementname="errorMsgId"type="xs:integer"minOccurs="0"/>
<xs:elementname="message"type="xs:string"minOccurs="0"/>
</xs:sequence>

</xs:complexType>

</xs:schema>

This XML schema corresponds to events generated by Remote Maintenance
subsystem during its functional operations. Main element of the presented XML
schema is event, which can be composed of only one of its subcomponents; the most

28

INDENICA D4.2.1

important are three complex elements: request, response, systemParameters.
Request components used to send data related with web service query. Response
carries the data related to the web service's server answers. SystemParameters
element is responsible for data gathered by the machine monitoring (CPU, virtual
memory and storage related data). Besides, there are also other complex types, e.g.
user and camera which are located inside request and response elements. Error
handling is performed by an errorMessage element, which is added in that case to
every other event messages.

Installation

4.5.2 Eventsin Yard Management Subsystem

The second subsystem that was used to derive a common event model was Yard
Management Subsystem, which is sending events formatted based on JSON.
Gathering events from this subsystem requires polling to the REST-based endpoint,
which in result sends events that were not previously fetched.

The Format of events is a simple 4 attribute JSON structure:

{

Hidll :ll<id>ll,

"triggered" :<timestamp>,

"type":"<string>",

"data": {<object>}

}

The description of types and inner structure of the data element can be found in the
Table 1 and Table 2.

The target unified event model used by INDENICA will be derived from base service
platforms. After that each of base platforms will need to be tailored to comply with
the model and the communication mechanisms used in the monitoring engine.

These unified models will base a monitoring interface, which will be developed in the
second half of the project.

type description data
TruckCheckln checkin of truck at checkpoint appData
5 TruckCheckOut checkout of truck at checkpoint appData
E TruckDelayed A truck reports a delay appData
TruckRescheduling tresheduling due to delays of trucks or delays at dock appData
TaskScheduled a task was created for a jockey taskData
§ TaskReserved a jockey reserved a task taskData
§ TaskFinished a task was finished by a jockey taskData
TrailerRelocation additional event on finished trailer reloc. taskData
E:: trailerld,
&« | MisdirectedTrailer if a trailer finds itself at a wrong dock appData

29

INDENICA D4.2.1

appDatal,
scheduling collision collision in schedule due to delays appData2
NoAppointmentFound if no appointment could be found for a req. Appointmentdate appData
NoFreeWaitingbay if no waiting bay could be found for a check-in-truck appData

Table 1: Internal structure of JSON-based event of Yard Management Subsystem

appData | appointmentld, start, end, dock, truckld

taskData | timestamp, taskType, trailerld, jockeyld, origin, destination
Table 2: Inner structure of data elements of Yard Management Subsystem event model

4.5.3 Events in Warehouse Management System

The third system was the warehouse system which contains two subsystems, the
warehouse management system and the conveyor control subsystem. Both
subsystems add events to message queues.

The warehouse management system supports events related to transportation units
and events related to orders. Events are sent as text based key value pairs.

Order related events

MessageType : OrderCreated | PickingStarted | OrderFinished

OrderId : <alphanumerical identifier>

Transport unit related events

MessageType : TransportUnitCreated | TransportUnitStored

TransportUnitId : <alphanumerical identifier>

The Conveyor control system supports events related to conveyors and events
related to stacker cranes:

Conveyor related events:

MessageType : ConveyorTransportStarted

TransportUnitId : <alphanumerical identifier>

MessageType : ConveyorTransportFinished
TransportUnitId : <alphanumerical identifier>

TransportUnitLocation : <alphanumerical identifier>

Stacker crane related events

MessageType : StackerCraneStartedPickingUp

CraneId : <alphanumerical identifier>

30

INDENICA D4.2.1

TransportUnitId : <alphanumerical identifier>

MessageType : StackerCranePickedUp
CraneId : <alphanumerical identifier>

TransportUnitId : <alphanumerical identifier>

MessageType : StackerCranePickedUp
CraneId : <alphanumerical identifier>
TransportUnitId : <alphanumerical identifier>

TransportUnitLocation : <alphanumerical identifier>

4.6 Runtime Governance Dashboard

Runtime Governance Dashboard is a tool to visualize the usage of domain-specific
platforms at runtime. Its purpose is to show which web services are used the most,
what the parameters are, how many errors and exceptions are being caught and
allowing drill-down analysis for corresponding service call requests and responses.

Runtime Governance Dashboard allows using dynamic data models (meta-models)
for monitored events, i.e. in case of different observed service platforms it will adjust
to the fields of the message received. Also if certain fields that are in the model are
being empty, they will not be shown in the dashboard to reduce the number of
columns.

The dashboard is based on observing web-service calls (request and responses) thus
require events in a certain XML-based structure:
<xs:element name="event" type="EventType" />
<xs:complexType name="EventType">
<xs:sequence>
<xs:element name="eventId" type="xs:long" minOccurs="1"/>
<xs:element name="eventName" type="xs:string" minOccurs="1"/>
<xs:choice>
<xs:element name="request" type="RequestType"/>
<xs:element name="response" type="ResponseType" />
</xs:choice>

<xs:element name="errorMessage" type="ErrorMessageType"
minOccurs="0"/>

</xs:sequence>

</xs:complexType>

It is required that domain-specific service platform’s services’ names are included in
eventName parameter and eventld parameter corresponding to the name is also
present. Request and Response types are assumed to include additional parameters,
which will be displayed in the dashboard.

31

INDENICA D4.2.1

The main dashboard automatically extracts all possible web service function names
from the corresponding XML schema and provides the number of requests and
responses caught during the runtime execution of the environment. The main
dashboard is depicted in the Figure 14.

EEi RMS Events Dashboard - 0o x
("Run-time dashboard
Operation I Number of requests Number of responses

initiateVoiceSession 3 3
initiateVoiceAndVideoSession 75
addUserToSession 21
removeUserFromSession 12
terminatecCall 33
registerNewUser 76
updateUserinformation 17
unregisterUser 0 0
getUserStatus 274 273
changeStatus 83 84
getUserList 19
getActiveSessionlds 38
connectToCameraWithVoiceAndVideo 48
connectToCameraWithVideoOnly 27
changeCodecOrResolution 0 76
registerCamera 0 0
unregisterCamera 0 0
updateCameralnformation 0 0
getCamera 0 0
getCameralist 0 0
sendTextMessageToUserGroup 0 0
sendTextMessageToUser 0 0
sendTextMessageToUsers 0 0
sendTextMessageToAllRegisteredUsers |0 0
sendTextAlertWithVideo 0 0

Figure 14: Main view of Runtime governance dashboard

If there are any events already present, the dashboard allows opening the detailed
view of a single type of web service function after double-clicking the cell with the
number. After that the detailed view is available, which shows requests and
corresponding responses for a single type of service. The detailed view is not
showing all possible parameters that were provided in the XML schema for the
operation, but shows only the ones, that were used in the events caught.

The detailed view of the dashboard is depicted in the

32

INDENICA D4.2.1

i = RMS Events Dashboard -8 x
“Run-time dashboard | All Data | Events/TerminateSessionsinitiatedRemotely | Events/RegisterCamera |
adminid cameraSipld _|cameralpAddre xPosition yPosition horizontalAngle | verticalAnale zoom timestamp requestld
admin sip:conference...|192.168.113.3... |92.32 42.14 0.642 1.324 3.5 Thu Oct 17 14:... |34 -
admin sip:conference...
admin sip:conference...|192.168.113.3... |92.32 42,14 0.642 1.324 3.5
admin sip:camera@h... [192.168.113.3... [92.32 42.14 0.642 1.324 3.5
admin sip:camera@h...
admin sip:conference...
admin sip:conference...|192.168.113.3... |92.32 42.14 0.642 1.324 3.5
admin sip:conference...
admin sip:conference...|192.168.113.3... |92.32 42.14 0.642 1.324 3.5
admin sip:conference...
admin sip:conference...|192.168.113.3... |92.32 42.14 0.642 1.324 3.5 3
admin sip:conference...
admin sip:conference... 192.168.113.3... |92.32 42.14 0.642 1.324 3.5
admin sip:conference...
admin sip:conference...|192.168.113.3... 92,32 42,14 0.642 1.324 3.5
admin sip:camera@h... [192.168.113.3... |92.32 42.14 0.642 1.324 3.5
admin sip:camera@h...
admin sip:conference...
admin sip:conference... [192.168.113.3... [92.32 42,14 0.642 1.324 355
admin sip:conference... ml
admin sip:conference...|192.168.113.3... |92.32 42.14 0.642 1.324 3.5 Thu Oct 17 14:... 102
admin sip:conference... Thu Oct 17 14:... [104 ~|
r errorMsald timestamp requestld responseld
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:21 CEST 2013 |34 34 -
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:21 CEST 2013 |37 37
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:22 CEST 2013 |38 38
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:22 CEST 2013 |39 39
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:22 CEST 2013 |41 41
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:22 CEST 2013 |42 42
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:22 CEST 2013 |43 43
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:22 CEST 2013 |45 45
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:22 CEST 2013 |46 46
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:22 CEST 2013 |48 48
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:18:22 CEST 2013 |49 49 r
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:18:22 CEST 2013 |51 51
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:19:15 CEST 2013 |90 90
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:19:15 CEST 2013 |93 93
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:19:15 CEST 2013 |94 94
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:19:15 CEST 2013 |95 95
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:19:15 CEST 2013 |97 97
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:19:15 CEST 2013 |98 98
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:19:16 CEST 2013 |99 99
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:19:16 CEST 2013|101 101 m
CAMERA REGISTERED SUCCESSF... |0 Thu Oct 17 14:19:16 CEST 2013|102 102
CAMERA UNREGISTER REQUEST ... |0 Thu Oct 17 14:19:16 CEST 2013 (104 104 ~|

Figure 15: Detailed view of Runtime governance dashboard

The Runtime governance dashboard has been developed in Java using Swing.

4.6.1 Installation and configuration
Prerequisites

* Maven (version 2 or 3)

* Java (version 6)

¢ Circa 100 MB free disk space
* Installed, configured and running RMS Platform

Installation of monitoring dashboard

Complete installation and configuration process can be performed by invoking in the
main adaptive monitoring directory:

mvn clean install

Starting the dashboard

Jjava -jar dashboard-indenica/adaptive-monitoring-
dashboard/target/adaptive-monitoring-dashboard.jar

4.7 System Supervision Dashboard

The system supervision dashboard has been developed complementary to the
Runtime governance dashboard to provide the general health state of the
environment on which the base platforms are running on.

33

INDENICA D4.2.1

The data is gathered from the monitoring engine and stored in the database
(hsqgldb), which is then used to push merged data to the JSP and allows view
manipulation in JavaScript.

Rabbit MQ Message broker

XML messages are sent to the RabbitMQ, which is queuing system based message
broker. Queuing is very comfortable for monitoring engine because messages do not
overload its server and can be popped in every moment of time. Applied
publish/subscribe RabbitMQ system is shown in Figure 16. It is composed of
producer (base platform), exchange, queue (both placed on a Rabbit MQ server) and
consumer (monitoring engine). Producer and consumer can publish/subscribe to
specified topic, default one is event.

‘ — ... = ‘

, ——

Figure 16: Rabbit MQ publish/subscribe system - producer, exchange, queue and consumer

Displaying monitoring data using web user interface

Monitoring messages are sent to the Rabbit MQ can be also retrieved and presented
in a web browser, for which Google Chart is used. Examples of collected and
processed machine monitoring data are presented in Figure 17.

Parameter Value
processorUsage [%] 41
processorldle [%] 957
freeVirtualMemory [bytes] 109759527
totalVirtualMemory [bytes] 126550016
maximumVirtualMemory [bytes] 1877213184
Disc 0: freeSpace [bytes] 0
Disc 0: totalSpace [bytes] 0
Disc 0: usableSpace [bytes] 0
Disc 1: freeSpace [bytes] 103591343915
Disc 1: totalSpace [bytes] 127991935795
Disc 1: usableSpace [bytes] 103591343915
Disc 2: freeSpace [bytes] 0
Disc 2: totalSpace [bytes] 0
Disc 2: usableSpace [bytes] 0

Figure 17: Mean values of machine monitoring data

34

INDENICA D4.2.1

Data that is presented in Figure 17 can be also shown in a more readable form,
which is depicted in Figure 18. The decision of how the data should be presented is

left to the system user.

Metric

x CPU
: ~V. Memory~

x V. Memory) _ P

x Disc 2 ; / b /: 13 3‘::\

Figure 18: Dashboards with the most important data

Tracking of the current system changes is possible as well. The example of processor
usage is shown in Figure 19. Various lengths of time filters are supported available to

manual manipulation by the user.

® processorUsage [%] 3.10 ® processorldle [%] 96.80 | September 04, 2013

100
| \. ["‘ \
80

60

f\ [40

Figure 19: Timeline with usage of processor

System supervision dashboard has been developed in Java (JSP) and JavaScript with
JBOSS as an application container.

4.7.1 Installation and configuration

To install the System Supervision Dashboard it is required to have Java (version at
least 6), Apache Maven (version at least 2.2.1), RabbitMQ and about 100 MB of
available disc space. In order to test the tool it is essential to have one of the
domain-specific platforms installed and running — the RMS platform is the reference
platform which was used during the development process.

Complete installation and configuration process (without installation of RabbitMQ -
since it is not considered as a part of our System Supervision Dashboard pack and
should be installed separately) can be performed just by invoking in the main System
Supervision Dashboard directory:

35

INDENICA D4.2.1

mvn clean jboss-as:deploy -Djboss-as.username=admin
-Djboss-as.password=password
-Djboss.server.ip=jboss.ip.address

36

INDENICA D4.2.1

5 Tool suite for adaptation of Virtual Service Platforms

5.1 Adaptation Engines

In concert with the monitoring infrastructure, INDENICA provides an extensible,
layered platform adaptation framework, geared towards efficient and effective
control of service platforms, minimizing communication overhead while maintaining
high flexibility and allowing for complex management structures.

-

Repository

-Monitoring Rules
-Monitoring Capabilities

Adaptation
Engine

Adaptation
Interface

Adaptation
Interface

Adaptation
Interface

_) Information Flow
Figure 20: Runtime Infrastructure Architecture: Adaptation Overview

The adaptation infrastructure is instantiated according to configuration directives
deployed to the repository (cf. Section 2.2) by creating all necessary adaptation
engines and establishing connections to the integrated service platforms. As
mentioned in Section 4.4, connections between adaptation engines and according
monitoring engines are set up.

5.2 Adaptive Monitoring Interface

The Adaptive Monitoring Interface was designed and implemented during the third
year of the project and is used to gather common type of information from
underlying service platforms with the ability to adapt how monitored information is
processed and passed for further analysis. Adaptive Monitoring Interface was
developed and demonstrated together with Runtime Governance Dashboard
described in section 4.5 of this document. The main concept is to provide adaptive
services to steer how certain types of events are forwarded to appropriate user’s

37

INDENICA D4.2.1

queues or dashboards. The architecture of the Adaptive Monitoring Interface is
depicted in the Figure 21.

Domain-specific / \
platform Runtime Dashboards
41-}[] administrator
events
4‘}[] engineer

Monitoring °
Engine

] architect

Adaptive Monitor

userRole:

\ / Adapt administrator

loggingLevel: error

/L

/

Figure 21: Adaptive Monitoring Interface Architecture

The approach requires domain-specific platforms to provide three types of
information about the events occurred as XML-formatted messages that are sent to
the monitoring engine. The types of events forwarded to the monitoring engine
included:

¢ Service requests
* Service responses
* Updates on system parameters

Subset of messages generated by the domain-specific platforms need to be
forwarded to the governance dashboard so they can be spotted by system
administrators, accountants, business logic specialists or any other personnel inside
the organization. Adaptive Monitoring Interface is realized as a mapping between
characteristics of an event (event logging level) and characteristics of the users
(event role name). This map can be pre-defined, and at the runtime it can be
adapted using web services listed in the table 3.

Web service name Parameters Description
M S i i
createRoleWithLoggingLevel roleName aps user role with given event
loggingLevel logging level
removeRole roleName Destroys map entries for given

38

INDENICA D4.2.1

user role
getRoleNames Gets names of all used user roles
changeRoleLoggingLevel roleName Changes logging level for a given
loggingLevel user role

Table 3: List of adaptation services for Adaptive Monitoring Interface

The Adaptive Monitoring Interface has been implemented in Java as a component
for JBOSS version 7.

5.2.1 Installation and configuration

To install the Adaptive Monitoring Interface it is required to have Java (version at
least 6), Apache Maven (version at least 2.2.1), Apache ActiveMQ and about 100 MB
of available disc space. In order to test the tool it is essential to have one of the
domain-specific platforms installed and running — the RMS platform is the one that
was used for evaluation of the tool.

Complete installation and configuration process (without installation of activeMQ -
since it is not considered as a part of our adaptive monitoring pack and should be
installed separately) can be performed just by invoking in the main adaptive
monitoring directory:

mvn clean jboss-as:deploy -Djboss-as.username=admin
-Djboss-as.password=password
-Djboss.server.ip=jboss.ip.address

5.3 Adaptation of base platforms

The adaptation is managed by decentralized adaptation engine. With regards to the
adaptation interface we have decided to follow similar path as we do with the
monitoring interfaces, which is the unification of the models and implementation of
several communication mechanisms, i.e. HTTP-Service Calls, direct messaging via
queues, SOAP, etc.

In the Warehouse Management System the adaptation service is provided as SOAP-
based Web Service. The service is able to launch two different types of storage
strategies — FastGoodsIn and OptimizedStorage depending on the situation in the
warehouse.

In the Yard Management System the adaptations are more complex and include
providing an ‘expected result’ as a feedback, which in the future will help us to
create self-adapted sub-system, which does not only fire some adaptation actions,
but also reacts, as the adaptation does not result with expected outcome.

The adaptation strategy in Yard Management System has been depicted in Table 3.

39

INDENICA D4.2.1

Monitored
Subject Rules adaptationAction Expected Result
Docks
o Parking
§ areas
k5
2
g | Whole
o | yard if dock.load == 100% and
- waitingBay.load>= 80%, decrease of
notification to operator occupancy
Waltlng if a truck waitingtime is
time over 4h, reschedule it post on
= with higher priority over /adpt/prioritizeTruck with | this and other trucks
§ newer trucks truckld=x will be rescheduled
Q
(7]
if timeonyard==high,
Time on waitingtime==high and major and dynamic
yard dock.load== medium, reschedulings
change algorithm to post on /adpt/algo with reducing waiting time
dynReschedulingAlgo scheduling=dyn | static of trucks
idle time is improved
o) (other jockeys are
% Idle time if avg idle time null/high, intended to work in
& decrease/increase jockey | post on /adpt/jockey the warehouse
count with action=dec|inc instead)
m
o
5 if a collision takes place, post on /adpt/reschedule
o scheduling | resolve it with dynamic with
collision algorithm appld=x&scheduling=dyn
e
=3 if a dock is disabled, post on /adpt/dock/{id}
B reschedule all appoints to | with rescheduling
different docks state=disabled|enabled | in/excluding this dock

Table 3: Adaptation strategy for Yard Management System

The adaptation of the Remote Maintenance System is based SOAP-based web
service interface. There are multiple functions available to change the strategy how
the RMS is working at runtime as well as in deployment time. The complete list of

40

INDENICA D4.2.1

these services is attached in the table 4. For each of this services there are get and
set functions which can be easily integrated in more complex adaptation engine,

III

which will be able to “contro

the behaviour of multiple domain-specific service

platforms at the same time. These services can be triggered with Boolean values
where true means allowing and false is disabling certain functionalities.

Adaptation service names

Description

TextMessageHistoryPermission

Store text messages in internal
database for further use

DirectVoiceAndVideoSessionlnitiationPermission

Allowing users to make direct calls
(video and audio) to other users
(phone to phone)

RemoteVoiceAndVideoSessionlnitiationPermission

Allowing system-initiated calls (video
and audio)

DirectVoiceSessionlnitiationPermission

Allowing users to make direct calls
(audio only) to other users (phone to
phone)

RemoteVoiceSessionlnitiationPermission

Allowing system-initiated calls (audio
only)

DirectVideoSessionlnitiationPermission

Allowing users to make direct calls
(video only) to other users (phone to
phone)

RemoteVideoSessionlnitiationPermission

Allowing system-initiated calls (video
only)

DirectTextMessageSessionPermission

Allowing text messaging between
users

RemoteTextMessageSessionPermission

Allowing system-initiated text
messaging

MachineMonitoringPermission

Allowing monitoring of the RMS

Table 4: Adaptation services for Remote Maintenance System

41

INDENICA D4.2.1

6 Summary

There are multiple tools developed during INDENICA specifically for deployment,
monitoring, adaptation and controlling of Virtual Service Platforms. Tool suites have
been evaluated and used in the context of WP5 creating an important value of the
use cases and demonstration scenarios.

Tools have been used during dissemination and exploitation activities and were
identified by industrial partners as potential components for their usage in the
products and services in the future.

42

INDENICA D4.2.1

A Appendix 1: EcoWare Usage Guide

Al Installation and Setup

Requirements
In order to use the ECoWare framework you need this system configuration:

e as ECoWare is implemented in Java, you must have the Java Virtual Machine
(1.7 version) installed on your system. In particular, you want to have the
Java-Development-Kit (JDK

e as ECoWare wuses RabbitMQ as a messaging broker to manage
publish/subscribe processes, you must have RabbitMQ on your system.

e ECoWare uses “Esper” and “EPL - Event Processing Language” to manage
complex event processing, so the knowledge of these concepts is necessary
for a correct use of ECoWare).

ECoWare is cross-platform, so you can run and use it on “Microsoft Windows”,
“Linux” and “Mac OS X”.

Installation

This is a brief guide on how to install and use the ECoWare framework. ECoWare is
an open-source software, so you can import it in your Eclipse workspace and work
with ECoWare’s source-code. You can use ECoWare like it is or contribute new
changes.

Technological aspects
For a correct working flow, we point out some important things:

e we recommend that using Eclipse IDE as development environment. Be sure
to download the correct 32-bit or 64-bit version, depending on your machine.

e we suggest using JDK 7.

Before getting started with development, you'll need to have an Eclipse git plug-in
installed. We suggest using EGit, as it's a very popular git plug-in.

N.B. To install new plug-in in Eclipse, use the Help = Install New Software... menu.

Import ECoWare source-code into Eclipse
To import ECoWare source-code into Eclipse you have to follow this steps:

e Select File - Import...
* Browse Git - Projects from Git, and then click Next
e Select URI an then click Next

e Now in the URI field type this URI:
"https://github.com/samguinea/ecoware.git". If everything goes right, the

43

INDENICA D4.2.1

Host and Repository path fields should populate automatically. Check that the
selected Protocol is https, and then click Next

e Inthe Branch Selection dialogue, tick master branch and then click Next

* Now, in the Local Destination dialogue, select the directory to store your local
repository or keep the suggested one if it is right for you. Don't change the
other fields and then click Next

e Wait for the repository to be cloned (don't worry if this may take a couple of
minutes, it's normal)

e Then check that in the showed dialogue the Import existing projects option is
selected and then click Next

e Finally, in the last dialogue (Import Projects) check that the local repository
that you have created in the step 6 is selected (also Search for nested
projects should be selected) and then click Finish.

Wait for the end of the final importing operations and the project will be imported in
Eclipse. So now you are ready to work with it.

EcoWare Access Manager

The “ecowareaccessmanager” is a module that provides a helper interface between
high level aspects (like ECoWare process) and low level aspects (like usage of the
RabbitMQ bus for send/receive messages). In other words, it makes the usage of the
bus for sending and receiving data transparent. This is achieved by means of two
classes, “ECoWareMessageReceiver”, that can be used for receive messages from
the bus, and “ECoWareMessageSender” that can be used to send messages to the
bus.

As said, the “ECoWareMessageSender” class let you easily send messages to the bus,
without facing of low level aspects related to the bus management such as creation,
configuration and direct use of the bus. In fact, after the creation of an
“ECoWareMessageSender” object you can send a message to the bus using very few
but intuitive methods.

First of all, you have to create a new “ECoWareMessageSender” object:
ECoWareMessageSender sender = new ECoWareMessageSender(hostname, publicationID);

where hostname is the host on which can be found the messaging bus (that is
RabbitMQ server) and publicationlID is the publication ID of the messages that will be
send.

Now, to send a message, all you have to do is:
e start (open) the connection to the bus:
o sender.startConnection();
e send a message:
o sender.send(message, event_type, event _id);

e when you have sent all messages, stop (close) the connection to the bus:

44

INDENICA D4.2.1

o sender.stopConnection();

Now, let's have a closer look at the send method. As can be seen, that method
requires three parameters: the “message” that needs to be sent, the “event type” to
which the message is related to, and the “event id” (for future use, “-1” if not used).

The “message” parameter is the body of an ECoWare event, and this is modeled as a
“HashMap”, so its content is a set of pairs. Each event has its specific map that is
required (and you must respect) to make possible their correct usage during analysis
processes.

For example, a “StartTime” event (event type = START_TIME) or a “EndTime” event
(event type = END_TIME) is defined by this map:

<"key", String.class>
<"value", long.class>

that is, the name of the first element of the map is “key” and its type is “String”,
while the name of the second element of the map is “value” and its type is “long”.

So, for example, if you want send a “StartTime” event and its related data (that is,
the message body), you can do it by using the following Java statements:

HashMap<String, Object> mapMessage = new HashMap<String, Object>();
mapMsg.put("key", "105");

mapMsg.put("value”, 1.0);

sender.send(mapMessage, ECoWareEventType.START _TIME, -1);

A.2 Tutorial

In this section we provide a short tutorial to help you to learn how use “ECoWare" to
create your analysis applications using "ECoWare KPIs" as processing units. First of
all, however, we introduce general aspect related to the creation and the usage of
"ECoWare" objects to create your applications.

In generale, an ECoWare Process is a set of one or more "KPI objects", such as
"Calculators", "Filters" and "Aggregators", that can be used to realize your analysis
process. To create a process, we have to create a "launcher" that create and launch
the execution of the "KPI objects" (one or more). So, we create a main class with an
"ECoWareProcessor" object that is an object that, using a XML file as processor
configuration, can create and launch an ECoWare process:

publicclassProcessorLauncher{
private ECoWareProcessor processor;

Now we can define a static "main" method for our "ProcessorLauncher" class which
instantiates a new ECoWareProcessor object, configures it passing to its constructor

45

INDENICA D4.2.1

a XML configuration file (that, as we will see, contains all the needed information to
create our calculator/s), and then starts the so created ECoWareProcessor object:

staticvoidmain(args[]){
processor =new ECoWareProcessor("configuration_file.xml");
processor.start();

}

where

configuration_file.xml is a XML file with the specification of the ECoWare

process, which as said above, in general, can either be a single KPl or a composition
of more KPlIs.

The general XML structure for defining a KPI calculator is the following:

<Calculator>
<name>CALCULATOR_NAME</name>
<subscriptID>SUBSCRIPTION_ID_1</subscriptiD>
<subscriptID>SUBSCRIPTION_ID_2</subscriptID>

<subscriptID>SUBSCRIPTION_ID_N</subscriptID>
<publicationID>PUBLICATION_ID</publicationID>
<computation>
<intervalUnit>INTERVAL_UNIT</intervalUnit>
<intervalValue>INTERVAL_VALUE</intervalValue>
<outputUnit>OUTPUT_UNIT</outputUnit>
<outputValue>OUTPUT_VALUE</outputValue>
</computation>

</Calculator>

where:

CALCULATOR_NAME is the name of the KPI calculator we want to use.

from SUBSCRIPTION_ID_1 to SUBSCRIPTION_ID_N are the subscriptions to
which the calculator wants register for. An important thing to point out is
that there must be at least one subscription.

PUBLICATION_ID is the calculator publication ID (to “sign” messages that it
send on the bus).

INTERVAL_UNIT and INTERVAL_VALUE refer to the parameters for the
inspector window used in the EPL (Esper) query. Valid values for
“INTERVAL_UNIT” are those that are admitted in the EPL language syntax (eg.
“seconds”, “minutes”, etc.), while valid values for “INTERVAL_VALUE” are
numbers.

OUTPUT_UNIT and OUTPUT_VALUE refer to the parameters for the
“OUTPUT” clause of the EPL query. Admitted values are the same as those
admitted for “INTERVAL_UNIT” and “INTERVAL_VALUE”.

The general XML structure for defining a KPI filter is the following:

<Filter>

<name>FILTER_NAME</name>
<eventName>KP|_TO_FILTER</eventName>

46

INDENICA D4.2.1

<attributeName>KPI|_ATTRIBUTE_TO_FILTER</attributeName>
<subscriptID>SUBSCRIPTION_ID(=KPI_PUBLICATION_ID)</subscriptID>
<publicationID>FILTER_PUBLICATION_ID</publicationI/D>
<cutoff>THRESHOLD</cutoff>

</Filter>

where:

e FILTER_NAME is the name of the KPI filter. Possible names are “HPFilter” (for
a “High Pass” filter) and “LPFilter” (for a “Low Pass” filter).

e KPI_TO_FILTER is the name of the KPI to which the filter must be applied.
e KPI_ATTRIBUTE_TO_FILTER is the KPI attribute to filter.
e SUBSCRIPTION_ID is the reference to the publication ID of the KPI to filter.

e FILTER_PUBLICATION_ID is the filter publication ID (to “sign” messages that it
send on the bus).

e THRESHOLD is the threshold limit used to determine the accepted values
(and, by the way, the rejected values).

Generally speaking, in a XML configuration file can be defined one or more KPIs, each
of them encapsulated in a specific tag (eg. Calculator for a KPI calculator, Filter for a
KPI filter, etc.). In addition, as first tag, must be present the host name where can be
found the messaging bus (that is the host on which RabbitMQ is running). This can
be specified using the busHostName tag. Finally all of that must be enclosed in the
ecoware tag.

Example of an Average Response Time

In this tutorial we will see how to create an Average Response Time calculator in
ECoWare using the ECoWare Processor class. An "Average Response Time" calculator
is a processor that compute the average response time related to one or more
specific services (or tasks) to which it subscribes.

First of all, we have to create the "launcher" that creates and launches the execution
of the calculator. So, we create a main class (eg. “AvgRTLauncher.java”) with an
"ECoWareProcessor" object (that, as we know, is an object that, using a XML file as
processor configuration, can create and launch an ECoWare process):

publicclassAvgRTLauncher{
private ECoWareProcess process;

Now we can define a static "main" method for our "AvgRTLauncher" class which
instantiates a new ECoWareProcessor object, configures it passing to its constructor
a XML configuration file (that, as we will see, contains all the needed information to
create an average response time calculator), and then starts the so created
ECoWareProcessor object:

staticvoidmain(args[]){

47

INDENICA D4.2.1

processor =new ECoWareProcessor("AvgResponseTime.xml");

processor.start();
}
where AvgResponseTime.xml is a XML file with the specifications of the ECoWare
process.

For this tutorial we want a specific KPI calculator, that is an "Average Response Time"
calculator, which has “AvgRT_Browser” as publication ID, “BrowserInfo” as its unique
subscription ID, and which process data within last 20 seconds and outputs result
data every 5 seconds.

So the complete XML file configuration (“AvgResponseTime.XML”) will be like this:

<ecoware>
<busHostName>localhost</busHostName>
<Calculator>

<name>AvgRT</name>
<subscriptID>Componentinfo</subscriptiD>
<publicationID>AvgRT_Component</publicationI|D>
<computation>
<intervalUnit>seconds</intervalUnit>
<intervalValue>20</intervalValue>
<outputUnit>seconds</outputUnit>
<outputValue>5</outputValue>
</computation>

</Calculator>

</ecoware>

In this way we have created a processor that calculate/evaluate the average
response time relative to a process that sends data with the “Componentinfo” Id.

To test this processor, we have also implement a simple sender, that is the process
that send data (on the bus) with the “Componentinfo” Id.

To simplify things we can say that an average response time calculator evaluates the
average of a set of “EndTime - StartTime” differences, where the set refers to events
that fall in the window defined in the “AvgRT” calculator configuration file (as we
seen previously). Knowing this, the simplest sender we can produce to test our
“AvgRT” calculator is one that sends a sequence of “StartTime” and “EndTime”
events. So, our sender can be implemented like this (eg. “SenderTest.java”):

HashMap<String, Object> mapMessage = new HashMap<String, Object>();
ECoWareMessageSender sender;
sender = new ECoWareMessageSender("localhost", "Componentinfo");
sender.startConnection();
for(int i=0; i<xmsgs; i++){
mapMsg.put("key", "105");
mapMsg.put("value”, 1.0);
sender.send(mapMsg, ECoWareEventType.START _TIME, -1);
mapMsg.put("key", "105");
mapMsg.put("value”, 3.0);
sender.send(mapMsg, ECoWareEventType.END_TIME, -1);
Thread.sleep(10);

48

INDENICA D4.2.1

mapMsg.put("key", "105");

mapMsg.put("value”, 2.0);

sender.send(mapMsg, ECoWareEventType.START _TIME, -1);
mapMsg.put("key", "105");

mapMsg.put("value”, 3.5);

sender.send(mapMsg, ECoWareEventType.END_TIME, -1);
Thread.sleep(100);

}

sender.stopConnection();

For the meaning of mapMessage see the official ECoOWare documentation. In short,
the mapMessage is the message format that ECoWare actors use to "comunicate"
with one another.

Adding a Filter

A filter is an object that is applied to an kpi processor to filter its data. Generally
speaking, in ECoWare exist two type of filters: a "High Pass" filter and a "Low Pass"
filter. A "High Pass" filter is a filter that accepts all values that are above a certain
threshold limit and rejects all other values, while a "Low Pass" filter is the opposite
because it accepts all values that are under a certain threshold limit and rejects all
other values.

In this tutorial we will see how it is possible in ECOWare to create a High Pass filter
and how to apply it to an Average Response Time calculator.

For this tutorial we want two KPIs:

e an "Average Response Time" calculator, which has “AvgRT_Component” as
publication ID, “Componentinfo” as its unique subscription ID, and which
process data within last 20 seconds and outputs result data every 5 seconds.

e a "High Pass" filter which filters the "value" attribute of an "AvgRT"
calculator; the "AvgRT" calculator sends messages with “AvgRT_Component”
as ID. The publication ID of the filter is "AvgRT_Component_HPFilter" and the
threshold limit is "2.0".

So the complete XML file configuration (“FilteredAvgRT.XML"”) will be like this:

<ecoware>
<busHostName>localhost</busHostName>
<Calculator>

<name>AvgRT</name>
<subscriptID>Componentinfo</subscriptiD>
<publicationID>AvgRT_Component</publicationI|D>
<computation>
<intervalUnit>seconds</intervalUnit>
<intervalValue>20</intervalValue>
<outputUnit>seconds</outputUnit>
<outputValue>5</outputValue>
</computation>

49

INDENICA D4.2.1

</Calculator>

<Filter>

<name>HPFilter</name>
<eventName>AvgRT</eventName>
<attributeName>avg</attributeName>

<subscriptID>AvgRT _Component</subscriptiD>
<publicationID>AvgRT_Component_HPFilter</publicationID>
<cutoff>2.0</cutoff>

</Filter>

</ecoware>

When you run this tutorial, you will see that the filter activates every time the value
produced by "AvgRT" is greater than "2.0" (look at the output produced by
"FilteredAvgRTLauncher"). After a first run, try to set the "value" key of the second
"END_TIME" event to "3.0" and see what change.

50

INDENICA D4.2.1

B Appendix 2: SPASS-meter Quick Guide

This is a brief introduction into the usage of the SPASS-meter instrumentation
framework. As the support for monitoring non-Java SUMs is currently under
development, we will discuss here exclusively the installation, the setup and an
example for Java SUMs.

B.1 Installation

SPASS-meter is packaged into a set of Java archives (JAR) for Windows and Linux
operating systems as they differ in the included native data gatherer library.
Depending on the instrumentation mode, the JARs are linked to the SUM in different
ways:

e Static instrumentation: The SPASS-meter-ant.jar contains the
instrumentation layer, the static instrumentation tool, and the integration
into the build process. Currently, a simple ANT task for build-process
integration is provided. For runtime, the SPASS-meter-static.jar
includes the probe collection layer, the data aggregation layer, the data
presentation layer as well as pre-packaged extensions to such as the
implementation of the INDENICA monitoring interface for integration with
the INDENICA runtime environment. The SPASS-meter-static.jar
needs to be included into the class path of the SUM.

* Dynamic or mixed-mode instrumentation: The SPASS-meter-ia.jar
contains the instrumentation layer and the Java instrumentation agent. Due
to technical reasons, the Java instrumentation agent loads dynamically two
further JARs, one for boot time and one for runtime. The SPASS-meter-
boot . jar contains annotations and interfaces which need to be present at
boot time of the SUM in order to resolve dependencies inserted into the SUM
or (dynamically) into the Java library. The SPASS-meter-rt. jar contains
the upper layers for processing notification calls as well as the analysis
extensions similar to SPASS-meter-static. jar described above.

If the SPASS-meter monitoring scope specification is given in terms of source code
annotations, the SPASS-meter-annotations.jar needs to be included into
the class path at development time.

In order to install SPASS-meter the JARs mentioned above just need to be copied into
one directory (lib directory). The specific JARs are specified as JVM parameters,
either the java agent parameter or the class path parameter. In the dynamic case,
the location of JARs which are loaded at runtime is inferred based on the already
specified JARs.

B.2 Setup

For applying SPASS-meter to a SUM, the monitoring framework needs to be
configured. The configuration is twofold: a global configuration which determines
the basic operation mode and defaults as well as the monitoring scope specification.
The global configuration is given as part of the JVM or tool parameters, respectively.

51

INDENICA D4.2.1

The monitoring scope can either be specified using source code annotations, e.g. in
handcrafted or generated code, or as an XML file. The monitoring scope defines the
monitoring groups, i.e. the relevant classes (and methods if required) as well as the
individual resources to be monitored. Depending on the specified analysis
extensions, the results of monitoring may be a summary file, live events etc.

In INDENICA, the XML monitoring scope specification will be generated from the
variability model (runtime variabilities) and further input taken from the monitoring
requirements or specification (WP2/WP3). As output, monitoring events will be sent
over the monitoring interface event mechanism to the INDENICA runtime
environment. Required parameters for the event mechanism will be taken from the
deployment specification.

B.3 Example

The example below illustrates the generic application of SPASS-meter to Mobicents
JAIN SLEE [MIJSLEE]. As the Mobicents source code shall not be modified for
monitoring its services, the following XML monitoring scope specification defines
that

* Monitoring starts with the startup of the Mobicents SLEE container

* All resources supported by SPASS-meter except for memory usage
(memAccounting mode CREATION) are accounted for all dynamically
started Mobicent services (implementing javax.slee.Sbb)

* Monitoring stops at the end of the Mobicents SLEE container.

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://sse.uni-hildesheim.de/instrumentation"

memAccounting="CREATION">
<namespace name="" typeOf="javax.slee.Sbb"/>

<namespace name="org">

<namespace name="mobicents">
<namespace name="slee">
<namespace name="container">
<module name="SleeContainer">
<behavior signature="initSlee()">
<startSystem/>

</behavior>

<behavior signature="shutdownSlee () ">
<endSystem/>

</behavior>

</module>

52

INDENICA D4.2.1

</namespace>
</namespace>
</namespace>
</namespace>

</configuration>

For dynamic instrumentation the Java agent is given as a JVM parameter. Below, the
Java agent is packaged in spass-meter-ia. jar, the monitoring scope is given in
the mobicents.xml file and regular update events are issued each 2000 ms.

-javaagent:instrumenter\spass-meter-
ia.jar=xmlconfig=mobicents.xml,

outInterval=2000

The static instrumentation of Mobicents is illustrated below in terms of a simple ANT
task (fragment). The static instrumentation tool takes two directories with JAR files
as input, produces instrumented jar files as output and considers the specified
options currently specified in the same format as for dynamic instrumentation
shown above.

<spassInstrumenter

classpathref="classpath"

in="1ib/*.jar, server/default/deploy/mobicents-slee/lib/*.jar”
out="instrumented"

params="xmlconfig=mobicents.xml,outInterval=2000" />

53

INDENICA D4.2.1

C Appendix 3: Indenica Runtime Platform Demonstrator

This section presents a guide on the steps necessary to set up the INDENICA runtime
platform in Eclipse, as well as a standalone application.

C.1 Initial Eclipse Project Setup

Getting the project up and running in Eclipse for the first time involves the following
steps:

e Don’t worry about errors due to missing build.properties or due to an
unbound classpath variable (e.g. M2_REPQ), as they should be fixed by
maven automatically.

e Set your default installed JRE to your JDK (required for maven)
e Install a maven integration, e.g. m2eclipse
* Run maven on the project in order to populate the maven repository
e Refresh your project. Additionally, it might be needed to
o create an empty build.properties file
o modify your eclipse.ini to point your -vm to the JDK-VM to get rid

of a tools:jar:1.5.0 error

C.2 Getting Project Dependencies

The runtime platform uses MongoDB and RabbitMQ for data storage and messaging.
These components must be running in order for the platform to work.

You can either install these requirements on your development machines or use a
prepared virtual instance.

C.2.1 Manual Installation of Dependencies

For installation of MongoDB and RabbitMQ, please refer to the respective project
web sites. After installing and starting the components, you will need to adjust the
platform environment configuration to point to your local instances.

NOTE: At the moment, this information is scattered throughout several files. Future
refactoring and cleanup will improve this situation. Using the preconfigured virtual
machine described below should be an easier way to get the necessary
dependencies running.

Currently, environment configuration is stored in the following files in
src/main/resources/

e src/main/resources/META-INF/sca-deployables/*.composite: The
* . composite files contain information about how to instantiate runtime
instances. The RepositoryComponent section contains a reference to the
MongoDB instance. Adjust the dbAddress property accordingly.

54

INDENICA D4.2.1

e src/main/resources/files2DB/properties/*.properties: The *.properties files
contain configuration information for the initial data population module. The
eventRepositoryAddr property should point to the RabbitMQ instance. Adjust
this property accordingly.

C.2.2 Use a preconfigured Virtual Machine with all Dependencies

The current default configuration assumes that there are active RabbitMQ and
MongoDB instances running on host 192.168.56.101.

These requirements can be easily fulfilled by perusing vagrant and a virtual machine
provided by TUV. The steps necessary to start the virtual machine are:

e Install vagrant (see http://vagrantup.com/)
gem install vagrant

e Addthe indenica support dependencies base box:
vagrant box add indenica support dependencies \
http://db.tt/gQcjgPzp

e |Initialize the machine:
mkdirsupport components&& cd support components
vagrant initindenica support dependencies

You only have to perform these steps once. After the initial setup, the configured
virtual machine can be started using:

vagrant up

After a few minutes, the virtual machine should be running, the network settings
applied and the environment ready to go.

The virtual machine can be stopped using:

vagrant halt

The machine can be started again using vagrant up. For further information, please
refer to the Vagrant Documentation.

C.3 Starting the Platform

C.3.1 Command Line

When you have the dependencies running, you need to deploy the platform
configuration data before running the simulation:

mvnexec:java -Dexec.mainClass="indenica.deployment.utils.Populator"

With all prerequisites deployed, the Warehouse simulation can be started using:
mvnexec:java -Dexec.mainClass="indenica.deployment.Launcher™ \

-Dexec.arguments="UseCaseWP4Runtime"

This will start the demo you saw at the Munich meeting.

55

INDENICA D4.2.1

C.3.2 Eclipse

To start the simulation from within Eclipse, run
indenica.deployment.usecase.UseCaselLauncher class as a Java Application.

To stop the runtime instance, hit return in the console.

the

56

INDENICA D4.2.1

References

[BHO4] W. Binder and J. Hulaas. A Portable CPU-Management Framework for
Java.lEEE Internet Computing, 8:74—83, September 2004.

[CO04] A. Chawla and A. Orso. A generic instrumentation framework for collecting
dynamic information.SIGSOFT Softw. Eng. Notes, 29:1-4, September 2004.

[ES12] H. Eichelberger and K. Schmid, Erhebung von Produkt-Laufzeit-Metriken: Ein
Vergleich mit dem SPASS-Meter-Werkzeug, in: Bliren, G., Dumke, R. R., Ebert.
C., Minch, H. (Eds.), Proceedings of the DASMA Metrik Kongress (MetriKon
'12), pp. 171-180, (in German).

[HWH12] A. van Hoorn, J. Waller, W. Hasselbring, 2012. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis, in:
Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE '12), pp. 247-248

[SGF 2009] The Open Group: The Open Group SOA Governance Framework; Draft
Technical Standard, 2009. www.opengroup.org/projects/soa-governance.

[D1.2.1] INDENICA Deliverable D1.2.1 - Requirements Engineering Framework,
Language and Tools for Service Platforms (Interim), 2011-10-31

[D2.3.1] INDENICA Deliverable D2.3.1 - Service Platform Infrastructure Repository
Concept & Realization (Interim), 2012-01-31

[D3.1] INDENICA Deliverable D3.1 — View-based Design Time and Runtime
Architecture for Tailoring VSPs, 2011-10-18

[D3.2] INDENICA Deliverable D3.2 - Architecture for Role-Based Governance of
Virtual Service Platforms, 2012-01-31

[D3.3.2] INDENICA Deliverable D3.3.2 — Tool Suite for Virtual Service Platform
Engineering (Final), 2013-09-30

[D5.2] INDENICA Deliverable D5.2 - Report on Concepts for Tailoring and Extending
Service Platforms, not yet published

[J112] JXInsight/OpenCore, 2012, jinspired.com/.

[JSON] Internet Engineering Task Force, RFC 4627, 2006,
http://www.ietf.org/rfc/rfc4627.txt

[MJSLEE]Mobicents JAIN SLEE, Red Hat Middleware LLC, 2008,
http://www.mobicents.org/slee/intro.html

[OSOA] Open SOA (2007). Service Component Architecture (SCA) Specifications
V1.00.http://www.osoa.org

[008] Oracle, Java Management Extensions (JMX) Technology, 2008,
www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

57

INDENICA D4.2.1

[SPECO08] SPEC Corp., SPECjvm2008, http://www.spec.org/jvm2008/

[WSCol]L. Baresi, S. Guinea, “Self-supervising BPEL Processes,” IEEE Transactions on
Software Engineering

[XML] W3C, Extensible Markup Language, 2008, http://www.w3.org/TR/REC-xml/

58

