
Document ID:
Deliverable Number:
Work Package:
Type:
Dissemination Level:
Status:
Version:
Date:
Author(s):

Project Start Date: October

Engineering Virtual Domain

Specific Targeted Research Project: FP7

Abstract

Domain-specific customization of service p

appropriate tool support. In this deliverable we

INDENICA Variability Engineering tool

evolution of the tool since the intermediate Deliverable D2.4.1. This includes a

discussion of the general enhancements to the tool, and, in particular

Implementation Language (VIL) as a ma

on these enhancements, we will revisit the running example introduced in Deliverable

D2.4.1 to illustrate the changes made to the tool. A major part of this deliverable is

also contained in the form of appendices, which include the documentation of the

Variability Engineering Tool.

Variability

 INDENICA – D2.4.2
 D2.4.2

 WP2
 Deliverable

 PU
 final
 1.0
 2013-09-30
 SUH, SAP

October 1st 2010, Duration: 36 months

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

specific customization of service platforms can only be effective with

appropriate tool support. In this deliverable we will present the final

INDENICA Variability Engineering tool. The focus of this deliverable is on the

tool since the intermediate Deliverable D2.4.1. This includes a

discussion of the general enhancements to the tool, and, in particular,

Implementation Language (VIL) as a major extension for instantiation support. Based

ts, we will revisit the running example introduced in Deliverable

D2.4.1 to illustrate the changes made to the tool. A major part of this deliverable is

also contained in the form of appendices, which include the documentation of the

g Tool.

Variability Engineering Tool

(final)

Specific Service

5 / 257483

latforms can only be effective with

final state of the

. The focus of this deliverable is on the

tool since the intermediate Deliverable D2.4.1. This includes a

discussion of the general enhancements to the tool, and, in particular, the Variability

instantiation support. Based

ts, we will revisit the running example introduced in Deliverable

D2.4.1 to illustrate the changes made to the tool. A major part of this deliverable is

also contained in the form of appendices, which include the documentation of the

Engineering Tool

Version History

0.1 29. Jun 2012 initial version

0.2 03. Sep. 2012 running example added

0.3 18. Sep 2012 variability engineering tool design and initial relation to other
WPs added

0.4 30. Sep. 2012 final revision and corrections of complete document

1.0 30. Sep. 2012 final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction ... 5

2 Variability Engineering Tool Overview ... 7

2.1 Evolution of EASy-Producer beyond D2.4.1 .. 7

2.2 Textual Instantiation Support ... 8

3 Variability Implementation Language .. 11

4 Running Example – Revised ... 14

4.1 Configuration Space Definition Including Comments 15

4.2 Implementation Space Definition Using VIL ... 16

4.3 Improved Configuration of a Domain-Specific Service Platform 21

5 Conclusion .. 22

6 References ... 23

7 Appendix: EASy-Producer Documentation .. 24

Appendix 1: EASy-Producer User Guide ... 25

Appendix 2: EASy-Producer Developers Guide ... 51

Appendix 3: IVML Language Specification .. 84

Appendix 4: VIL Language Specification .. 153

INDENICA D2.4.2

 4

Table of Figures

Figure 1: Overview of the VIL instantiation process. ... 9

Figure 2: Comments for configuration support in EASy-Producer. 16

Figure 3: VIL-build script in EASy-Producer. .. 17

Figure 4: VIL-build script of the content-sharing application. 18

Figure 5: Cocktail variability model template in VIL. ... 20

Figure 6: Cocktail resolution model template in VIL.. 20

Figure 7: Product configuration using the IVML configuration editor. 21

INDENICA D2.4.2

 5

1 Introduction

The main focus of work package 2 within the INDENICA project is the customization

of service platforms. However, customization of software in general and of service

platforms in particular can only be effective with appropriate tool support. In this

deliverable we discuss the current state of the tool support designed and realized in

INDENICA. The work presented here is based on previous results and concepts

researched in work package 2, in particular in deliverables D2.1, D2.2.1 and D2.2.2.

This deliverable supplements the interim deliverable D2.4.1 and addresses in

particular the introduction of the VIL-language, which was not represented in D2.4.1.

However, we refrain from reproducing the main content of D2.4.1 here for the sake

of brevity.

In Section 2 we will discuss the main evolution steps that have been performed with

respect to the tool environment in comparison to deliverable D2.4.1. The focus is,

however, on changes that were made, the basic state as described in deliverable

D2.4.1 will not be reiterated. This section also outlines some of the basic ideas and

decisions relevant to the VIL. Next, Section 3 discusses the main components of the

VIL. Finally, Section 4 provides a running example, which is used to illustrate the

current and final state of the variability implementation tool. We reuse the same

example as has been used in Deliverable D2.4.1 as this helps to highlight the

differences in the revised version.

A major part of this deliverable is also contained in the form of appendices. There,

we provide a number of guidebooks that have been developed to supplement the

variability tool implementation and support users (including developers as users) in

employing the technology provided in the form of this tool. We attach four

supplementary documentations: the Users Guide and the Developer Guide for the

Easy-Producer Tool and a language specification for the IVML and VIL language

respectively.

Further relationships to other INDENICA deliverables are:

• Deliverable 1.3.1 and 1.3.2 discuss the realization of the INDENICA decision

framework. In particular, deliverable 1.3.2 discusses the integration of

variability decisions and architectural decisions and the role of the Variability

Engineering tool EASy-Producer as part of it.

• Deliverable 2.1 discussed the basic requirements of the variability modelling

approach and the basic concepts that were introduced within the INDENICA

Variability Modeling Language (IVML). The implementation of this has already

been introduced with Deliverable D2.4.1.

• Deliverable 2.2.1 and 2.2.2 discussed the conceptual basis that lead to the

variability implementation language VIL, which has been now realized and is

introduced as part of this deliverable.

• Deliverable D5.4 discusses the evaluation and assessment of the INDENICA

technologies, including the EASy-Producer tool.

INDENICA D2.4.2

 6

Comments on the relation to previous work:

• The variability implementation language has been exclusively created as part

of the INDENICA development, with a strong focus on addressing INDENICA

requirements as described in previous deliverables. As there is very little in

this direction from other research, we regard this as a highly novel

contribution by this project.

• The variability engineering tool profited to some extent from previous work

(partially predating INDENICA), but most of the implementation had to be

rewritten during the project to accommodate INDENICA requirements.

INDENICA D2.4.2

 7

2 Variability Engineering Tool Overview

In this section, we will discuss the final state of the variability engineering tool EASy-

Producer with a particular focus on the enhancements relative to the state described

in Deliverable 2.4.1. This includes in particular the enhancements that have been

made with respect to the INDENICA Variability Modelling Language (IVML) and the

introduction of the Variability Implementation Language (VIL).

We will structure this discussion as follows: Section 2.1 will provide a brief overview

of major categories of general changes and improvements in EASy-Producer. In

Section 2.2, we will discuss the introduction of the VIL and its integration into the

EASy-Producer tool platform. A detailed discussion on the design and the

implementation of VIL will be provided in Section 3.

2.1 Evolution of EASy-Producer beyond D2.4.1

While the largest area of change and enhancement is the introduction of the VIL,

also several enhancements have been made in other areas. Below we discuss the

major areas in which improvements were made:

• INDENICA Variability Modelling Language (IVML): IVML was first introduced

in Deliverable D2.1 and fully defined in Deliverable D2.4.1. Thus, only minor

changes and improvements were applied to the language concepts, like the

clarification of certain modelling elements. Further, some elements that

increase the usability of the language were added, like the mass-assignment

of attribute values. The IVML language specification in the appendix provides

a full description of the modelling elements available in the final tool.

• Reasoning support for IVML: The reasoning support for IVML was a major

milestone in Deliverable D2.4.1. We implemented two alternative rule

engines to support the configuration of valid product instances based on a

variability model defined in IVML. While the first implementations only

checked for validity of certain configurations, the Drools reasoner also

supports value propagation to actively support the configuration process.

Value propagation enables the assignment of decision variables with valid

values by the reasoner based on the values previously assigned to other

decision variables. The reasoner calculates these values based on the

constraints defined in the variability model and assigns values if they are

uniquely implied by other constraints. This eases the configuration task as the

user needs to provide fewer configuration items. In particular, a complete

and valid configuration can be automatically derived based on a subset of

manually assigned variables (if they are related by constraints).

• Configuration support: The IVML language provides highly expressive

modelling elements and concepts for the definition of variability models.

Thus, defining a valid configuration based on a variability model is a rather

complex task. In order to support application engineers, we improved and

extended the editors of EASy-Producer to ease the configuration of a specific

product and to provide guidance throughout the product derivation process.

INDENICA D2.4.2

 8

The mayor improvements regarding the configuration support are the value

propagation introduced above, the ability to provide additional comments to

explain the purpose of decision variables and configuration options, editor-

based addition and deletion of new elements to container variables, and

feedback regarding the individual steps as well as the success or failure of the

instantiation process. We will also illustrate these improvements in the

running example in Section 4.

The main focus regarding the general improvements of EASy-Producer is on the

usability of the tool and the guidance to users. Further improvements affect the

reasoning and (to some extend) the IVML language as described above. However,

the major evolution of EASy-Producer is in the instantiation support as we will

discuss below.

2.2 Textual Instantiation Support

The instantiation support of EASy-Producer in its earlier versions was limited to the

application of instantiators to a (subset) of individual artefacts of a software product

line (cf. Deliverable D2.4.1). Also, in order to create a new instantiator, it had to be

implemented specifically as Eclipse plug-in, and explicitly integrated into the EASy-

Producer tool. Due to the need of a more flexible definition of the complete

instantiation processes and the absence of adequate third-party tools or concepts,

we introduced the concept of the Variability Implementation Language (VIL) in

Deliverable D2.2.2. In this section, we will provide an overview of the integration of

VIL into EASy-Producer. A detailed discussion regarding the design and the basic

concepts of VIL will be provided in Section 3.

VIL provides a simple, but expressive language for defining the instantiation process

of variable product line artefacts regardless of the variability implementation

technique in use. This covers aspects like the definition and combination of build

tasks as well as the integration with IVML. The resulting VIL-specifications are

processed by a VIL-engine, which resolves the variabilities according to the IVML

configuration, such as the decision variable values, the binding time, etc., as

illustrated in Figure 1. Further, the instantiators of EASy-Producer as well as any

third-party tools can be integrated into VIL in order to reuse existing variability

realization techniques, like the instantiators described in Deliverable D2.4.1.

VIL significantly goes beyond the instantiation support that existed in EASy-Producer

(and other variability management tools) so far. Below, we will briefly describe the

main advantages of VIL with respect to the previous instantiation support of the tool:

• Artefact management: The management of generic artefacts as well as

specific (instantiated) artefacts in EASy-Producer was mostly implemented in

the instantiator core component (cf. Deliverable D2.4.1). Further, EASy-

Producer was initially designed for Java-projects, which required changes to

the implementation of the tool or at least the instantiators to support other

types of projects and artefacts. Also selecting the application of instantiators

was restricted to a “per-artefact” base and the instantiators were then

applied to each artefact individually (taking the configuration into account).

These artefacts (including directories) had to be visible in the project at

definition time. The handling

copying artefacts,

could not be changed by the domain engineer

elementary instantiator should be used for an artefact the order of

application could not be explicitly controlled.

introduction of VIL in several ways:

o Artefact selection in VIL:

select artefacts of any type to be processed in the instantiation

process. These artefacts can be placed at any location and must not

explicitly be part of the actual

also evaluated during runtime of the instantiator, which allows to first

create artefacts

o Artefact handling

specific artefacts

how to take over the generic artefacts of a software product line into

a specific project

also allows

before.1

• Artefact manipulation

individual instantiators of EASy

artefacts was part of the instantiator implementation.

manipulations or changing existing manipulations required the modification

of the instantiator implementation.

introduction of the VIL

o General artefact

and the deletion of existing artefacts can be defined as part of a VIL

1 The previous mechanism only allowed to either state that all artefacts of a certain project need to be copied or

only a reference had to be made. No mix was allowed.

Figure

INDENICA D2.4.2

The handling of the artefacts, e.g. creating, deleting, or

 was implemented in the instantiator core component

changed by the domain engineer. Finally, if more than on

elementary instantiator should be used for an artefact the order of

application could not be explicitly controlled. This has been changed by the

introduction of VIL in several ways:

Artefact selection in VIL: VIL enables domain engineers to freely

select artefacts of any type to be processed in the instantiation

These artefacts can be placed at any location and must not

be part of the actual EASy-Producer project. This definition is

evaluated during runtime of the instantiator, which allows to first

create artefacts, which are then instantiated in subsequent steps.

Artefact handling in VIL: Domain engineers decide how to handle

artefacts. For example, domain engineers specify when and

how to take over the generic artefacts of a software product line into

a specific project and when to apply which production strategy

also allows handling artefact inheritance in more flexible

Artefact manipulation: The manipulation of artefacts was defined in the

individual instantiators of EASy-Producer. For example, the creation of new

was part of the instantiator implementation. Thus, defining new

manipulations or changing existing manipulations required the modification

of the instantiator implementation. This has been simplified greatly by the

introduction of the VIL.

rtefact manipulation in VIL: The creation of new art

and the deletion of existing artefacts can be defined as part of a VIL

s mechanism only allowed to either state that all artefacts of a certain project need to be copied or

only a reference had to be made. No mix was allowed.

Figure 1: Overview of the VIL instantiation process.

INDENICA D2.4.2

 9

, e.g. creating, deleting, or

component and

Finally, if more than one

elementary instantiator should be used for an artefact the order of

This has been changed by the

VIL enables domain engineers to freely

select artefacts of any type to be processed in the instantiation

These artefacts can be placed at any location and must not

This definition is

evaluated during runtime of the instantiator, which allows to first

which are then instantiated in subsequent steps.

Domain engineers decide how to handle

. For example, domain engineers specify when and

how to take over the generic artefacts of a software product line into

and when to apply which production strategy. This

artefact inheritance in more flexible ways than

The manipulation of artefacts was defined in the

For example, the creation of new

Thus, defining new

manipulations or changing existing manipulations required the modification

This has been simplified greatly by the

creation of new artefacts

and the deletion of existing artefacts can be defined as part of a VIL

s mechanism only allowed to either state that all artefacts of a certain project need to be copied or

INDENICA D2.4.2

 10

specification. This enables the domain engineer, for example, to

generate new artefacts as part of the instantiation process with only

one line of code in the VIL specification.

o Artefact content manipulation in VIL: The manipulation of artefact

contents can be defined in terms of so-called VIL templates. These

templates define a generic schema, for example, for changing the

content of a specific type of artefact in accordance to a specific

product configuration. These templates can be defined using the VIL

template language (see Section 3). However, one is not restricted to

this, but rather also external programs can be used to perform

content manipulation.

We will illustrate these advantages in the running example in Section 4.

INDENICA D2.4.2

 11

3 Variability Implementation Language

In this section, we will discuss the design and the basic concepts of the INDENICA

Variability Implementation Language (VIL). The concepts of VIL were initially

introduced in Deliverable D2.2.2. Due to practical experience in actually applying

these concepts to the different INDENICA case studies, we revised some of these

concepts and developed further concepts that enable a more comprehensive

specification of the required instantiation processes. These concepts are designed to

realize instantiation of artefacts in a generic, but simple way. Further, VIL still

consists of the four main constituents, namely the artefact model, black-box

instantiators, the VIL build language, and the VIL template language, which we will

discuss in detail here.

The decision to create two different languages in VIL was introduced to create a

separation of concerns. One language for the customization and generation of

individual artefacts (VTL), while the other focuses on the overall orchestration of the

creation process. In particular VIL aims at describing elementary production

strategies as introduced in Deliverable D2.2.1 and combining them into more

complex derived strategies. A production strategy, as we defined it in Deliverable

D2.2.1, defines the instantiation of a specific type of artefacts at a specific binding

time. One approach to this is to use the VIL Template Language (in particular for

textual artefacts), which enables the definition of artefact generation as well as

artefact transformation as part of a production strategy in a reusable way. However,

the definition of a production strategy also requires the relation of the artefacts and

the instantiation mechanisms. Further, a software product line (or a generic service

platform) typically consists of multiple different types of variable artefacts and, thus,

requires the combination of production strategies at the same binding time or even

at different points in time. For this purpose, we designed the VIL Build Language.

This language provides essential modelling elements for the specification of

production strategies, their combination, as well as further tasks that must be

executed as part of a complete instantiation process.

The VIL Template Language combines capabilities of popular generator or template

languages such as Xtend [2], Xpand [1] and Apache Velocity [5]. Although the VIL

template language is rather closely related to Xtend, it avoids a tight integration with

Java concepts in the template language. Further, it integrates (the access to) IVML

models with the VIL artefact model, provides instantiation-specific operations and

enables the customization of the language in mark-ups (relying on Xtext [3] language

infrastructure generation).

The VIL Build Language substitutes the VIL workflow language introduced in

Deliverable D2.2.2 and enables the specification of instantiation processes as well as

individual production strategies in terms of rules (similar to make [4]). The decision

towards a rule-based approach relies on the following advantages of rules over

workflows:

• Pre- and post-conditions: A rule may explicitly describe its pre- and post-

conditions (these conditions are optional in VIL), which must be fulfilled

INDENICA D2.4.2

 12

before the execution of the rule, or after the execution respectively. In the

workflow-based approach intended earlier such conditions either required

explicit definitions as part of the actual workflow implementation, or were

not possible at all (i.e., definition of post-conditions as part of the respective

workflow).

• Reduced coupling: The pre- and post-conditions of a rule further support

implicit rule calls as part of an execution. For example, a rule r1 may define

the presence of an artefact A as a pre-condition, while another rule r2 defines

A as it’s post-condition. In this scenario, the VIL engine will automatically

search for a rule that satisfies the pre-condition of r1 before executing this

rule and, thus, will execute r2 first. In the workflow-based approach, such

implicit relations could not be defined at all.

• Implicit iterations: The VIL build language supports the definition of generic

patterns instead of explicit artefacts. For example, the pattern src/*.java may

be used to identify all Java-file artefacts in the src-folder of a certain

implementation. Further, this pattern can be used to define the application of

operations on each of the Java-files identified by this pattern. In the

workflow-language, we had to define explicit loops (that may include

additional conditions) to identify a specific subset of artefacts.

• Partial execution: A typical capability of rule-based system like make [4] is

the ability to automatically calculate which artefacts are up-to-date and

which artefacts must be updated. This enables the partial execution of those

rules of a build-script where the target artefacts are not up-to-date (instead

of executing the complete build-script). A workflow-based approach cannot

provide such a capability at all.

The VIL build language provides very expressive modelling concepts, for example, it

allows to combine parameterization with rules, allows artefact matching, has

functional and declarative language elements, etc. (see the VIL language

specification in Section 7). A particular capability that is unique is the integration of

IVML concepts, like decision variables, attributes, etc., which define the scope of an

instantiation and configure the transformation or generation of certain artefacts.

The actual manipulation of artefacts (as part of the template language as well as of

the build language) requires the availability of certain operations on artefacts.

However, the operations available heavily depend on the type of artefact, which

makes a generic implementation of operations for all artefacts impossible. Thus, we

developed an explicit Artefact (Meta-) Model as the foundation of VIL. As introduced

in Deliverable D2.4.1, this model provides all (currently2) supported types of artefacts

and their operations that can be used in the VIL languages (and in the blackbox

instantiators, which we will describe below).

The last conceptual decision regards the integration of VIL with other tools, like

available compilers or linkers, or already implemented instantiators (like the ones

described in Deliverable D2.2.2). The resulting concept of Blackbox Instantiators in

2 The VIL artefact model can be extended by new artefact types and their operations. A description of how to

extend the artefact model is provided by the EASy-Producer Developers Guide in Section 7.

INDENICA D2.4.2

 13

VIL allows the integration of such tools in two ways: a) the execution of existing

(third-party) tools may be explicitly defined as part of a VIL build script (similar to

command line executions), or b) such tools may be wrapped into a VIL extension3.

This concept enables the application of VIL to legacy software product lines or other

software projects, which already use certain kinds of instantiation mechanisms.

3 The implementation of new instantiators is described in the EASy-Producer Developers Guide in Section 7.

INDENICA D2.4.2

 14

4 Running Example – Revised

In this section, we will revisit the running example introduced in Deliverable D2.4.1

and use it to describe the changes that have been made to EASy-Producer discussed

in Section 2. Thus, we will not describe the complete example in all details. Rather,

we will start with a summary of the individual steps discussed in Deliverable D2.4.1

and will then discuss the changes in the steps that are affected by the tool evolution.

In the running example given in D2.4.1, we illustrated and discussed the definition of

a software product line from which multiple variants of a content-sharing platform

can be derived. This included the following steps:

1. Definition of a new base service platform: The process of defining the

variability of a (base) service platform (a software product line) using EASy-

Producer from the perspective of a Platform Provider. This includes the

definition of a new product line project, the configuration space, and the

implementation space.

1.1. Configuration space definition: The definition of a variability model

using IVML, which defines the configuration space of a specific software

product line. While the basic definition of a variability model does not

change, we will illustrate the definition of additional comments for

decision variables to support the configuration task of application

engineers (see Step 2.1) in Section 4.1.

1.2. Implementation space definition: This includes the implementation of

the generic artefacts, including a specific variability implementation

technique and the application of a specific instantiator for the

instantiation process. While the implementation of the generic

artefacts is the same, the application of an instantiator will be

substituted by the definition of a VIL build script and two VIL templates

in Section 4.2.

2. Derivation of a domain-specific service platform: The process of deriving a

new domain-specific service platform from a software product line defined in

EASy-Producer from the perspective of a Platform Variant Creator. This

includes the configuration and instantiation of a domain-specific service

platform.Configuration of a domain-specific service platform: The

configuration of a specific service platform in terms of assigning values

to the decision variables of the variability model defined in Step 1.1. In

general this step does not change. However, we will illustrate the

increase in usability of the tool and the support of the application

engineer in Section 4.3.

2.2. Instantiation of a domain-specific service platform: The final

instantiation of the domain-specific service platform based on the

configuration defined in Step 2.1. This step does not change.

INDENICA D2.4.2

 15

We will use the following font styles throughout the following sections to illustrate

and distinguish between actions, active tool elements, and added input:

• EASy-Producer (as well as Eclipse) provides multiple editors, wizards, etc. In

order to identify the active tool element currently in use, it will be

highlighted using bold font.

• All actions that will be performed will be highlighted using italics font.

• All input to EASy-Producer will be illustrated in Courier New.

4.1 Configuration Space Definition Including Comments

The definition of the configuration space in terms of a variability model using IVML is

typically done by domain experts. These experts know what the different

configuration options mean and how they must be configured to yield a valid

product. However, this knowledge is typically not available for application engineers

that perform the task of configuring the final products. Thus, EASy-Producer

supports additional text-files that can be used to define comments on IVML decision

variables, e.g., to describe the impact of a certain configuration. In this section, we

will illustrate how to define such a text-file to guide the Platform Variant Creator

through the configuration of a specific service platform in Section 4.3.

The first step is to create a new text-file in the EASy-folder of the product line

project. For this purpose, right-click on the EASy-folder and select New � Other... �

EASy-Producer � IVML Comments File. The name of the file must match the name of

the IVML model file2 in order to unambiguously link the comments to the desired

decision variables. Thus, enter PL_Content_Sharing_0.text as the name of the

new file and click the Finish button. We will open the new text-file with a simple text-

editor to enter the comments. Each comment-definition starts with the name of the

IVML project4 followed by “::”, the name of the decision variable for which we want

to define the comment, and an equal-sign (“=”). The actual comment is defined in

plain text after the “=”. It ends at the end of the line.

The result of the comment-definition is shown in Figure 2. We defined two

comments for the two decision variables “app” and “plat” of the running example

(cf. Figure 2a)), which are displayed in the IVML Configuration Editor of the Product

Line Editor (cf. Figure 2b)).

4 Please note that a product line project may include multiple IVML-files, e.g. in a multi software product line

scenario. Further, an IVML-file may include multiple project-definitions. Thus, the name of the project must be

part of the comment-definition for a specific decision variable. However, in our example the names of the

product line project, the IVML-file and the project-definition in the file are rather similar.

While the definition of comments for decision variables seems

comments support the configuration of valid products in an easy

manner. Further, these comments provide a certain kind of documentation of the

configuration options of software product line, which can be maintained over th

complete lifecycle of the product line.

4.2 Implementation Space Definition Using VIL

In the running example we illustrated the implementation space definition using

SAP’s Cocktail instantiator, which was specifically developed for the SAP yard

management use case. We demonstrated Cocktail for base platforms developed in

Java and expressed meta

These annotations are used to bind configuration space elements (decision variables

given in terms of their quali

code. Based on this implementation, we will describe the definition of a VIL

script and according VIL templates

VIL consists of two sub-

template language. The VIL build script (defined with the VIL build language) is

automatically created when a new product line project is created

VIL-build script is named

the mandatory top-level

will discuss these elements in detail

manually as they are only requir

artefacts must be modified in accordance to a specific schema (cf. Section

we will start with the definition of the build script in the existing VIL

folder and then create the

b) Comments in the IVML configuration editor

Figure 2: Comments for configuration support in EASy

INDENICA D2.4.2

While the definition of comments for decision variables seems to be no big deal,

comments support the configuration of valid products in an easy

manner. Further, these comments provide a certain kind of documentation of the

configuration options of software product line, which can be maintained over th

complete lifecycle of the product line.

Implementation Space Definition Using VIL

In the running example we illustrated the implementation space definition using

SAP’s Cocktail instantiator, which was specifically developed for the SAP yard

e case. We demonstrated Cocktail for base platforms developed in

Java and expressed meta-information in terms of Java source code annotations.

These annotations are used to bind configuration space elements (decision variables

given in terms of their qualified names) to so-called variation points in the source

code. Based on this implementation, we will describe the definition of a VIL

templates in this section.

-languages, namely the VIL build language

template language. The VIL build script (defined with the VIL build language) is

automatically created when a new product line project is created. In

build script is named PL_Content_Sharing_0.vil and the initial content contains

level vilScript and an empty main-rule (cf. Figure

will discuss these elements in detail below. Further VIL templates have to be created

manually as they are only required if new artefacts must be created or existing

ed in accordance to a specific schema (cf. Section

we will start with the definition of the build script in the existing VIL-file in the

the required templates.

a) Comment-definition in the text-file.

Comments in the IVML configuration editor

Comments for configuration support in EASy-Producer.

INDENICA D2.4.2

 16

to be no big deal,

comments support the configuration of valid products in an easy, but effective

manner. Further, these comments provide a certain kind of documentation of the

configuration options of software product line, which can be maintained over the

In the running example we illustrated the implementation space definition using

SAP’s Cocktail instantiator, which was specifically developed for the SAP yard

e case. We demonstrated Cocktail for base platforms developed in

information in terms of Java source code annotations.

These annotations are used to bind configuration space elements (decision variables

called variation points in the source

code. Based on this implementation, we will describe the definition of a VIL-build

languages, namely the VIL build language and the VIL

template language. The VIL build script (defined with the VIL build language) is

. In Figure 3a) the

and the initial content contains

Figure 3b)). We

VIL templates have to be created

be created or existing

ed in accordance to a specific schema (cf. Section 3). Thus,

file in the EASy-

.

The first step to define the build script for the content

the VIL build language editor by simply double

PL_Content_Sharing_0.vil

the name of the product line and the version number (here initially “0”).

By default, each VIL build script has a mandatory

mandatory version as shown in

element of each VIL build script

• Project source

implementation, for example

the source-project is the generic content

• Configuration conf

variability model defined in IVML.

• Project target

of a software product line, in this case of the content

These parameters are automatically filled as part of the processing by the runtime

environment. Further parameters can be added, but they

receive corresponding values.

Further, each build script contains

rule is explicitly called by the instantiation process (which is

Producer). The main rule also

configuration as parameters.

pre-condition separated by a colon

conditions are specified. This is the reason for “ : “ in

of the rule is then specified within the curly brackets.

b) The initial contents of a

Figure

INDENICA D2.4.2

The first step to define the build script for the content-sharing platform is to open

the VIL build language editor by simply double-clicking the VIL

PL_Content_Sharing_0.vil in the EASy-folder. The name of the file is composed of

the name of the product line and the version number (here initially “0”).

By default, each VIL build script has a mandatory vilScript element and a

mandatory version as shown in Figure 3b). The vilScript element is the top

lement of each VIL build script. The mandatory parameters of this element are:

Project source: the source project, which provides the generic

implementation, for example, of a specific software product line. In this case

project is the generic content-sharing service platform.

Configuration conf: the configuration of a specific product based on the

variability model defined in IVML.

Project target: the target project, which represents the specific product

of a software product line, in this case of the content-sharing platform.

These parameters are automatically filled as part of the processing by the runtime

environment. Further parameters can be added, but they then need to explicitly

receive corresponding values.

build script contains a main rule (main), which is executed if no other

rule is explicitly called by the instantiation process (which is the default in EASy

The main rule also accepts the source and the target project as well as the

configuration as parameters. The equal-sign introduces the post-condition and the

condition separated by a colon. In the default build script in

This is the reason for “ : “ in Figure 3b). The actual content

of the rule is then specified within the curly brackets.

a) The VIL-build script file.

b) The initial contents of a VIL-build script file.

Figure 3: VIL-build script in EASy-Producer.

INDENICA D2.4.2

 17

sharing platform is to open

clicking the VIL-file

is composed of

the name of the product line and the version number (here initially “0”).

element and a

element is the top-level

. The mandatory parameters of this element are:

which provides the generic

of a specific software product line. In this case

sharing service platform.

: the configuration of a specific product based on the

represents the specific product

sharing platform.

These parameters are automatically filled as part of the processing by the runtime

then need to explicitly

is executed if no other

the default in EASy-

accepts the source and the target project as well as the

condition and the

In the default build script in Figure 3b) no

The actual content

INDENICA D2.4.2

 18

Figure 4 shows the build script specifying the instantiation process of the variant-

enabled content-sharing base platform. First, we define several paths to the source

and target source-folder (src) as well as the resource-folder of the target project

(lines 5-7). This eases the definition of the following rules as these paths are global

and can be used by all rules in this script. For example, the rule clean (lines 9-12)

uses the path to the target source-folder to delete all artefacts in this folder. The

next rule (lines 14-19) triggers the clean rule as this is defined as a precondition of

the rule. This means that we want to delete all artefacts in the target source-folder

that were previously instantiated to ensure that only recent artefacts are available

after the instantiation process. If this precondition is fulfilled (cleaning was

successful), the rule is executed which yields the copying of the source artefacts to

the target’s source folder. The third rule (lines 21-30) defines the actual resolution of

variation points in the generic artefacts (thus, rule createGenericInstance is a

precondition to this rule). First, the Cocktail variability model and the Cocktail

resolution model are created. This is done by creating a new FileArtifact in the

target project for each of the models and using the VIL Template Processor together

with respective templates to fill the new artefacts with their specific contents. Next,

the Cocktail instantiator is executed which requires the Cocktail resolution model

and the path to the (generic) target artefacts. Finally, in the main rule (lines 32-34)

the CocktailStrategy is envoked.

Please note, that we could have replaced the main strategy directly with the code of

the CocktailStrategy, making for a simpler implementation, but we wanted to

illustrate that VIL-rules are more than classical rules (e.g., in make): they can either

be envoked implicitly as preconditions – or explicitly like method calls.)

Figure 4: VIL-build script of the content-sharing application.

INDENICA D2.4.2

 19

The next step is to define the two templates that are used in the build script of the

content-sharing platform. Thus, we will first create the two files and then define

their content. For this purpose, right-click on the EASy-folder and select New � File.

We will use CocktailVarModelTemplate.vtl as the name of the new file (cf.

Figure 4, line 24) and click the Finish button. We will do the same actions again but

name the file CocktailResModelTemplate.vtl for the second template (cf.

Figure 4, line 27).

EASy-Producer provides a specific VIL template language editor for the definition of

VIL-templates that opens by double-clicking a template-file. Figure 5 shows the

Cocktail variability model template in the VIL-template language editor. The

template-element is the top-level element of each VIL-template. By default, this

element receives the following parameters:

• Project source: the source project, similar to the VIL-build-script.

• Configuration config: the configuration of a specific product, similar to

the VIL-build-script.

• FileArtifact varModel: in general, the last parameter is the artefact

that will be created or manipulated by the template. In Figure 5 this is the file

artefact, which will represent the Cocktail variability model.

The next mandatory element of a VIL-template is the main sub-template (lines 3-16).

This element is the entry-point for the application of the template to an artefact by

the VIL-template processor. In the example sub-template main, first, an XML-header

as well as two opening XML-elements are defined (lines 5-7). As these XML-elements

are surrounded by single quotation marks, they will be interpreted as plain text that

is written to the content of the artefact (the same will be done in case of lines 13-

14). Within the plain text definitions, a loop calls another sub-template named

createCocktailVariable for each decision variable of the configuration (lines 9-

11). This sub-template includes a single line of text indicated by the single quotation

marks (line 19). However, the dollar-sign enables the use of a VIL function call, which

will be interpreted and executed by the VIL template processor. This means, that the

actual value of the attribute name will be the name of the decision variable passed as

parameter to the sub-template. In this example, we assume that the names of the

decision variables match the names of the resolution-elements expected by Cocktail.

However, it would also be possible to use other names for the decision variables and

to define a translation of the names to the names of the Cocktail resolution model as

part of the VIL scripts. The final result will be the addition of an element-element

for each decision variable of the configuration within the variability-element.

The second template for the Cocktail resolution model is quite similar to the Cocktail

variability model as shown in

element of the main definition (lines 7 and 1

elements that are created as part of the

assume the same name-

expected by Cocktail as mentioned

Using VIL, the mapping of the configuration space to the

defined and the VIL build script as well as the VIL templates

specific content-sharing application variants according

It should be noted that in the example given above, part of the instantiation is

actually performed by Cocktail

(actually quite simple) instantiator can show: it can even use arbi

programs to perform part of the instantiation process.

weave aspects, use compiler

Figure

Figure

INDENICA D2.4.2

The second template for the Cocktail resolution model is quite similar to the Cocktail

variability model as shown in Figure 6. The only differences are in the

definition (lines 7 and 13) and in the attributes of the

lements that are created as part of the resolution-element (line 19).

-matching between the decision variables and the names

mentioned above.

mapping of the configuration space to the implementation space is

defined and the VIL build script as well as the VIL templates can be used to create

application variants according to a specific configuration.

It should be noted that in the example given above, part of the instantiation is

actually performed by Cocktail. However, VIL is much more powerful than this

mple) instantiator can show: it can even use arbi

programs to perform part of the instantiation process. Thus, it can

weave aspects, use compilers or other pre-processors, etc.

Figure 6: Cocktail resolution model template in VIL.

Figure 5: Cocktail variability model template in VIL.

INDENICA D2.4.2

 20

The second template for the Cocktail resolution model is quite similar to the Cocktail

fferences are in the resolution-

3) and in the attributes of the element-

ine 19). Further,

the decision variables and the names

implementation space is

be used to create

configuration.

It should be noted that in the example given above, part of the instantiation is

. However, VIL is much more powerful than this

mple) instantiator can show: it can even use arbitrary external

Thus, it can, for example,

4.3 Improved Configuration of a Domain

In this section, we will adopt the perspective of a Platform Variant Creator and

describe the improvements of the configuration support in EASy

Figure 7 shows the revised

the configuration of a specific instance of the content

sharing application (cf. Deliverable D2.4.1). Besides the new design of the decision

variable table (visualization for nested elements by indentation), the following new

columns ease the configuration and increase the usability:

• +: Adds a new element to a sequence or a set of decision variables.

• -: Deletes an existing element from a sequence or a set of

• Freeze: Allows freezing of individual decision variables by clicking the cell of

the freeze-column in the line of the desired decision variable (

freezing is described in detail in the IVML Language Specification in

• Comment: Displays additional text that supports the decision towards a

specific configuration of a decision variable (cf. Section

Further, the IVML Configuration Editor provide

configuration. The Propagate Values

decision variables can be automatically assigned with a value based on the values of

other decision variables and the constraints defined in the variability model (

Section 2.1). The Freeze All

current configuration. This is, in particular, helpful when it comes to large

variability models with a plethora of decision variables. Finally, the

button allows reverting changes made to the configuration in order to correct

certain assignments and actions, e.g.

Figure 7: Product configuration using the IVML configuration editor

INDENICA D2.4.2

Improved Configuration of a Domain-Specific Service Platform

In this section, we will adopt the perspective of a Platform Variant Creator and

describe the improvements of the configuration support in EASy-Producer.

ws the revised IVML Configuration Editor of the Product Line Editor

a specific instance of the content-sharing platform,

sharing application (cf. Deliverable D2.4.1). Besides the new design of the decision

(visualization for nested elements by indentation), the following new

columns ease the configuration and increase the usability:

Adds a new element to a sequence or a set of decision variables.

Deletes an existing element from a sequence or a set of decision variables.

Allows freezing of individual decision variables by clicking the cell of

column in the line of the desired decision variable (

freezing is described in detail in the IVML Language Specification in

Displays additional text that supports the decision towards a

specific configuration of a decision variable (cf. Section 4.1).

Further, the IVML Configuration Editor provides a set of new buttons that ease

Propagate Values button triggers the reasoner to check whether

an be automatically assigned with a value based on the values of

other decision variables and the constraints defined in the variability model (

Freeze All button freezes all assigned decision variables of the

current configuration. This is, in particular, helpful when it comes to large

variability models with a plethora of decision variables. Finally, the

ing changes made to the configuration in order to correct

certain assignments and actions, e.g., freezing the wrong decision variable.

Product configuration using the IVML configuration editor

INDENICA D2.4.2

 21

Specific Service Platform

In this section, we will adopt the perspective of a Platform Variant Creator and

Producer.

Product Line Editor for

sharing platform, the audio-

sharing application (cf. Deliverable D2.4.1). Besides the new design of the decision

(visualization for nested elements by indentation), the following new

Adds a new element to a sequence or a set of decision variables.

decision variables.

Allows freezing of individual decision variables by clicking the cell of

column in the line of the desired decision variable (the concept of

freezing is described in detail in the IVML Language Specification in Section 7)

Displays additional text that supports the decision towards a

s a set of new buttons that ease the

button triggers the reasoner to check whether

an be automatically assigned with a value based on the values of

other decision variables and the constraints defined in the variability model (cf.

button freezes all assigned decision variables of the

current configuration. This is, in particular, helpful when it comes to large-scale

variability models with a plethora of decision variables. Finally, the Undo Changes

ing changes made to the configuration in order to correct

freezing the wrong decision variable.

Product configuration using the IVML configuration editor.

INDENICA D2.4.2

 22

5 Conclusion

This deliverable provides an overview of the current (and final) state of the

INDENICA variability engineering tool set. While work has been done on various

aspects since the interim deliverable, like the usability of the tool, its reasoner

implementation, the configuration language IVML and others, the major invention in

the final stage of the project was the introduction of the Variability Implementation

Language (VIL) language, or more precisely the VIL set of languages as it includes a

build language and a template language. While the prototype itself aggregates all the

work done in the project so far, we did not rehash all the aspects that have already

been described in previous deliverables. Instead we attach in the appendixes several

guideline and specification documents, which provide a more detailed look at the

extent and capabilities of the tool set.

In the previous sections we discussed the major changes we made and in particular

the reasoning underlying the VIL language. Of course, many more aspects could be

discussed in principle, like the various alternative approaches we discussed and tried

prior to settling on the VIL-language concepts. We refrained in this deliverable from

a discussion of the many VIL-language concepts; rather we would like to point to the

attached VIL-language guide in the appendix for a discussion of this. We illustrated

the VIL-language with a brief walk-through of its use to show that it can be used

rather easily despite its extreme power. Overall VIL provides a generic

transformation language for product line assets.

The Variability Engineering toolset has achieved a rather mature state, there are still

various aspects, which could be improved in the future. Examples are further work in

the reasoning and value propagation algorithms, further work on the tool usability,

etc. Another avenue of future work is to apply it in a significant number of large-

scale, real-world projects. This would produce further data regarding the benefits

and drawbacks of this tool set and potential aspects of improvement.

INDENICA D2.4.2

 23

6 References

[1] Eclipse Foundation. Xpand, 2013. Online available at:

http://projects.eclipse.org/projects/modeling.m2t.xpand.

[2] Eclipse Foundation. Xtend 2.4.0 User Guide, 2013. Online available at:

http://www.eclipse.org/xtend/documentation/2.4.0/Documentation.pdf.

[3] Eclipse Foundation. Xtext 2.4 Documentation, 2013. Online available at:

http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf.

[4] Free Software Foundation. GNU Make - A Program for Directing Recompilation -

Version 3.82, 2010. Online available at:

http://www.gnu.org/software/make/manual/make.pdf.

[5] The Apache Software Foundation. The Apache Velocity Project, 2013. Online

available at: http://velocity.apache.org/.

INDENICA D2.4.2

 24

7 Appendix: EASy-Producer Documentation

In this section, we provide the complete documentation of the Variability

Engineering Tool EASy-Producer. This includes the following documents:

• The EASy-Producer User Guide: This guide introduces the reader to the EASy-

Producer tool from the perspective of a typical user (domain engineers,

application engineers, etc.). The guide starts with basic concepts supported

by the tool and a step-wise description of the installation. Further, a running

example will illustrate the application of EASy-Producer. Finally, a detailed

description of the editors will be given.

• The EASy-Producer Developer Guide: This guide introduces the reader to the

different extension mechanisms provided by EASy-Producer. This guide, in

particular, addresses software developers or domain engineers who want to

extend existing capabilities or need to define new capabilities currently not

supported by the tool. EASy-Producer can be extended in terms of new

instantiators, new artefact types, and new reasoners. For each of these

extensions, the guide provides a general introduction to the respective

concept and a step-wise description of the extension illustrated by an

example.

• The IVML Language Specification: This document provides the complete

specification of the INDENICA Variability Modelling Language (IVML),

including the basic and the advanced modelling concepts, the IVML

constraint language, and the language grammar.

• The VIL Language Specification: This document provides the complete

specification of the INDENICA Variability Implementation Language (VIL). This

includes the VIL Build Language, the VIL Template Language, the VIL

expression language, and the grammar of the different languages.

Stiftung University of Hildesheim
Marienburger Platz 22

31141 Hildesheim
Germany

EASy

Engineering Adaptive Systems

Stiftung University of Hildesheim

Software Systems Engineering (SSE)
Institute for Computer

Faculty for Mathematics, Natural
Science, Economics, and Computer

Science

EASy-Producer

Engineering Adaptive Systems

User Guide

Version 1.0

27.09.2013

Software Systems Engineering (SSE)

Institute for Computer Science
Faculty for Mathematics, Natural

Science, Economics, and Computer
Science

Engineering Adaptive Systems

EASy-Producer User Guide

Page 2

Version

0.1 23.08.2012 Initial version.
0.2 10.09.2012 Table of content, initial introduction, prerequisites, and installation

section added.
0.3 22.10.2012 Changes due to migration to Xtext version 2.3.1, preface added,

modification and extension of Sections 1, 3 and 4. Sections 2, 5, and
appendix initially added.

0.4 30.12.2012 Section 5 updated (screenshots and descriptions added).
0.5 04.03.2013 Section 3 updated (inclusion of Xtext features in EASy update site).
0.6 02.09.2013 Section 4 updated (inclusion of VIL)
1.0 27.09.2013 Version 1.0 completed (reference to other developers guide, IVML and

VIL language specification, corrected spelling, updated figures)

EASy-Producer User Guide

Page 3

Preface

EASy-Producer is a Software Product Line Engineering tool developed by the Software Systems

Engineering (SSE) group at the University of Hildesheim.

The tool is available as an Eclipse plug-in under the terms of the Eclipse Public License (EPL)

Version 1.0

The SSE group hosts the following EASy-Producer update site for easy installation and updates:

http://projects.sse.uni-hildesheim.de/easy/

©2012 Software Systems Engineering (SSE) Group, University of Hildesheim, Germany.

EASy-Producer User Guide

Page 4

Table of Contents

1. Introduction .. 5

2. Software Product Line Engineering at a Glance ... 6

2.1. Basic Software Product Line Engineering ... 6

2.2. Staged Configuration and Instantiation .. 6

2.3. Multi Software Product Lines .. 6

3. Installation .. 8

3.1. Prerequisites ... 8

3.2. Installation: Step by Step ... 8

3.3. Technical Recommendations .. 10

3.4. Further Guides and Specifications .. 10

4. Getting Started: Product Line Engineering is EASy ... 12

4.1. Running Example... 12

4.2. Defining a New Base Service Platform ... 13

4.2.1. Configuration Space Definition .. 14

4.2.2. Implementation Space Definition ... 16

4.3. Deriving a Domain-Specific Service Platform ... 18

4.3.1. Configuration of a Domain-Specific Service Platform ... 18

4.3.2. Instantiation of a Domain-Specific Service Platform ... 19

5. EASy-Producer in Detail... 21

5.1. The Product Line Project Structure .. 21

5.2. The Product Line Editor .. 21

5.2.1. The Project Configuration Editor .. 22

5.2.2. The IVML Configuration Editor ... 23

A. Appendix .. 25

A.1. Running Example IVML-File .. 25

A.2. Running Example VIL Build Script-File ... 26

EASy-Producer User Guide

Page 5

1. Introduction

EASy-Producer1 is a Software Product Line Engineering (SPLE) tool which facilitates the most

recent trends and concepts in SPLE, such as large-scale Multi-Software Product Lines (MSPL),

product line hierarchies, and staged configuration and instantiation. The focus of this tool is to

support these rather complex concepts in an easy-to-use way. Thus, this tool allows developing a

first prototypical Software Product Line (SPL) within minutes. Further, EASy-Producer is a

research prototype for demonstrating new approaches to SPLE in general and, in particular

approaches for simplifying the development of SPLs developed by the Software Systems

Engineering group (SSE) at the University of Hildesheim.

This live-document provides a user guide that introduces the reader to the concepts and

capabilities of EASy-Producer. In Section 2, we will give a brief overview on the SPLE concepts

supported by EASy-Producer. This will include introductions to the concepts of SPLE in general,

staged configuration and instantiation, MSPL, and product line hierarchies.

Section 3 will give guidance for the first steps in EASy-Producer. This section includes the

mandatory prerequisites, the installation guide, and additional recommendations for running the

tool successfully.

In Section 4, we will introduce EASy-Producer in terms of describing the development of a first

prototypical SPL and the derivation of a product line product. This will cover all aspects of SPL

development ranging from creating a new product line project in EASy-Producer, defining a

variability model and implementing the corresponding product line artefacts, to the derivation,

configuration, and instantiation of a specific product. While the purpose of this section is to

describe and illustrate the basic application of EASy-Producer, we will not discuss all details of the

tool at this point. This will be part of the next section.

Finally, Section 5 will describe EASy-Producer in detail. This includes detailed descriptions of the

individual editors and views of the tool.

1 EASy is an abbreviation for Engineering Adaptive Systems.

2. Software Product Line Engineering at a Gl

EASy-Producer supports basic Product Line Engineering

Software Product Lines or any combination of these techniques. In the next three sections we w

give a short introduction to these concepts.

2.1. Basic Software Product Line Engineering

Software Product Line Engineering (SPLE) is a software development approach which focuses on

the extensive reuse of artefacts involved or produced in the software lifecycle. The overall goal of

SPLE is to provide a high degree of

variants. This approach reduces the development effort and costs as well as the time

while increasing the overall software quality.

A Software Product Line (SPL) is a set of related softw

on a common infrastructure but differ with respect to their provided functionalities. These

differences are called variabilities.

2.2. Staged Configuration and Instantiation

Staged configuration and especially staged inst

derivation of product artefacts

variabilities while other variabilities are already bound

in arranged series. This technique can be used to support different stakeholder/user groups or to

create a common basis for related sub

example.

2.3. Multi Software Product Lines

Multi Software Product Lines (MSPLs) are able to compose several (independent) product lines to

form new products (or product l

EASy-Producer User Guide

Page 6

Software Product Line Engineering at a Glance

Producer supports basic Product Line Engineering and also staged configuration and Multi

ines or any combination of these techniques. In the next three sections we w

these concepts.

Product Line Engineering

Software Product Line Engineering (SPLE) is a software development approach which focuses on

facts involved or produced in the software lifecycle. The overall goal of

SPLE is to provide a high degree of automation for the configuration and adaptation of product

variants. This approach reduces the development effort and costs as well as the time

while increasing the overall software quality.

A Software Product Line (SPL) is a set of related software products which are developed based

on a common infrastructure but differ with respect to their provided functionalities. These

differences are called variabilities.

Staged Configuration and Instantiation

Staged configuration and especially staged instantiation are approaches for facilitating partial

facts. These partial instantiated artefacts can still contain open

ariabilities are already bound. Thus, the configuration can be connected

eries. This technique can be used to support different stakeholder/user groups or to

basis for related sub-sets of a product line. See Figure

Figure 1: Example for staged configuration

Multi Software Product Lines

Multi Software Product Lines (MSPLs) are able to compose several (independent) product lines to

form new products (or product lines). While forming an MSPL, the variability models of the single

staged configuration and Multi

ines or any combination of these techniques. In the next three sections we will

Software Product Line Engineering (SPLE) is a software development approach which focuses on

facts involved or produced in the software lifecycle. The overall goal of

automation for the configuration and adaptation of product

variants. This approach reduces the development effort and costs as well as the time-to-market

are products which are developed based

on a common infrastructure but differ with respect to their provided functionalities. These

antiation are approaches for facilitating partial

can still contain open

Thus, the configuration can be connected

eries. This technique can be used to support different stakeholder/user groups or to

Figure 1 for an illustrative

Multi Software Product Lines (MSPLs) are able to compose several (independent) product lines to

MSPL, the variability models of the single

product lines are combined to an integrated variability model. Derived products can contain

instantiated artefacts from all combined product lines.

Figure

EASy-Producer User Guide

Page 7

product lines are combined to an integrated variability model. Derived products can contain

from all combined product lines. See Figure 2 for an illustrative example.

Figure 2: Example for a Multi Software Product Line.

product lines are combined to an integrated variability model. Derived products can contain

for an illustrative example.

EASy-Producer User Guide

Page 8

3. Installation

In this section, we will describe the installation of EASy-Producer. In order to guarantee a

successful installation, we will introduce a set of mandatory prerequisites. This will be part of

Section 3.1 in which we will set up the environment in for EASy-Producer. In Section 3.2, we will

describe the installation of the tool in a step-wise manner using the Eclipse update site

mechanism and the EASy-Producer update site. Finally, Section 3.3 will give some technical

recommendations, while Section 3.4 introduces additional guides and specifications for EASy-

Producer.

3.1. Prerequisites

EASy-Producer is developed as an Eclipse2 plug-in and requires Xtext3 version 2.3.1. Thus, in

general, any Eclipse installation with Xtext version 2.3.1 is fine for installing and running EASy-

Producer. However, we cannot guarantee that any combination of Eclipse and Xtext version 2.3.1

will work with EASy-Producer. Thus, we propose the following Eclipse versions as they are tested

with EASy-Producer (and Xtext version 2.3.1):

 Eclipse 3.6 (Helios)

 Eclipse 3.7 (Indigo)

 Eclipse 4.0 (Juno)

We recommend using Eclipse 3.7 (Indigo) as this is the most exhaustively tested version of Eclipse

with EASy-Producer. Download an Eclipse package from http://www.eclipse.org/downloads/.

Please note that Eclipse 4.2 does not work with Xtext 2.3.1 due to incompatible dependencies.

Further, Xtext version 2.3.1 has to be installed in the newly downloaded Eclipse instance. Typically,

this is installed automatically when installing EASy-Producer due to plug-in dependencies.

However, we encountered situations in which these dependencies were not automatically

resolved. Thus, the EASy-Producer update site includes the required Xtext features. We will

describe the complete installation in the next Section.

3.2. Installation: Step by Step

The SSE group hosts an EASy-Producer update site for easy installation and updates. Thus, the

first step for installing EASy-Producer is to define a new update site in Eclipse. For this purpose,

start Eclipse and open the Install New Software dialog by clicking Help � Install New Software… as

shown in Figure 3:

2 Eclipse website: www.eclipse.org/
3 Xtext website: http://www.eclipse.org/Xtext/

The Install Dialog will appear (cf.

to be added. Thus, click on the Add…

The Add Repository dialog requires the definition of a name for the new update site and a location

as illustrated in Figure 4. The name is up to the user. For example, enter “

site”. The location is the URL of the

EASy-Producer update site: http://projects.sse.uni

Finish the definition of the new update site

Figure

Figure

EASy-Producer User Guide

Page 9

Dialog will appear (cf. Figure 4). In this dialog, a new location for available software has

Add… button in the upper right location of the dialog.

dialog requires the definition of a name for the new update site and a location

. The name is up to the user. For example, enter “EASy

is the URL of the update site:

http://projects.sse.uni-hildesheim.de/easy/

inish the definition of the new update site by clicking the OK button of the Add Repository

Figure 3: Open the “Install New Software” dialog

Figure 4: Add a new location for software updates

). In this dialog, a new location for available software has

button in the upper right location of the dialog.

dialog requires the definition of a name for the new update site and a location

EASy-Producer update

Add Repository dialog.

EASy-Producer User Guide

Page 10

The Install Dialog will now contain multiple categories. If you are installing EASy-Producer for the

first time and do not know which features to select, select the Quick Installation of EASy-Producer

category. Further, select the categories Xtend-2.3.1 and Xtext-2.3.1 to install the required Xtext

version (if not done before). This will install all required components automatically.

For more experienced users, select the categories and features as needed and click the Next

button. Follow the steps for installing EASy-Producer (accept the license agreement and ignore

the security warning for installing software of unsigned content, etc.), and restart Eclipse as

prompted.

Finally, you have successfully installed the EASy-Producer.

3.3. Technical Recommendations

In order to avoid memory problems while using EASy-Producer, we recommend increasing the

memory of the Eclipse application in which EASy-Producer is executed. The memory problems are

due to Xtext which requires more memory than defined in a typical Eclipse configuration.

Open the “eclipse.ini” file in your Eclipse directory and enter the following parameters at the end

of the file:

-vmargs

-Xms40m

-Xmx512m

-XXMaxPermSize=128m

3.4. Further Guides and Specifications

EASy-Producer provides two expressive languages that support the creation of required software

product line artefacts:

The INDENICA Variability Modelling Language (IVML) is and expressive, textual variability

modelling language, which provides basic and advanced modelling capabilities for the definition

of variability models. In order to define such a model based on IVML, we provide the IVML

language specification. This specification is part of the EASy-Producer installation and can be

found in the Eclipse Help.

The Variability Implementation Language (VIL) is a textual language for the flexible specification

of the instantiation process of a software product line. This language consists (beside other parts)

of the VIL build language and the VIL template language. The former language provides modelling

elements for the specification of the individual build tasks of the instantiation process, while the

latter language supports the definition of templates that can be applied to specific artefacts, for

example, to manipulate their content, as part of the instantiation process. The corresponding VIL

language specification is also part of the EASy-Producer installation and can be found in the

Eclipse Help.

EASy-Producer User Guide

Page 11

Further, EASy-Producer supports the extension of the tool by custom instantiatiors and

reasoners. The EASy-Producer Developers Guide introduces the reader to the possible extensions

and provides a step-wise description of how to extend the tool. This guide can be found in the

Eclipse Help as well.

The EASy-Producer user guide, the EASy-Producer developers guide, as well as the IVML and the

VIL language specification are also available as PDFs on the EASy-Producer update site.

EASy-Producer User Guide

Page 12

4. Getting Started: Product Line Engineering is EASy

In this section, we will adopt the roles of a domain engineer and an application engineer in order

to illustrate the application of EASy-Producer based on a running example. We will prototypically

model and implement the variability of a content-sharing platform, which allows the user to

upload, annotate, release and share content of various types. Section 4.1 will describe this

example in detail. In Section 4.2, we will adopt the role of a domain engineer and describe the

definition of a SPL from which multiple variants of the content-sharing platform can be derived.

This includes the definition of the variability model using the INDENICA4 Variability Modelling

Language (IVML), the implementation of these variabilities in source code, and the definition of a

build script for the instantiation of the generic artefacts using the Variability Implementation

Language (VIL). In Section 4.3, we will adopt the role of an application engineer and describe the

derivation of a specific service platform variant including the variant configuration and the

instantiation of the corresponding artefacts.

We will use the following font styles throughout this section to illustrate and distinguish between

actions, active tool elements, and added input:

 EASy-Producer (as well as Eclipse) provides multiple editors, wizards, etc. In order to
identify the active tool element currently in use, it will be highlighted using bold font.

 All actions that will be performed will be highlighted using italics font.

 All input to EASy-Producer will be illustrated in Courier New.

Please note that we will not discuss the tool in all details in this section. This will be part of the
detailed description of EASy-Producer in Section 5. Further, we will not discuss the IVML and VIL
language here. A detailed description of these languages can be found in the corresponding
language guides (cf. Section 3.4).

4.1. Running Example

In this section, we introduce a running example which we will use throughout Section 4 to

illustrate the basic application and capabilities of EASy-Producer. In this example a content-

sharing platform will be developed in terms of a SPL. A content-sharing platform allows its users

to upload, annotate, release and share content of various types. In this example, concrete

applications may differ with respect to:

 The supported content types such as text, video, audio, 3D content, or binary (large)
objects (BLOBs).

 The hosting infrastructure which consists of a) a web container being responsible for
serving the content and b) the database, which stores user and content data.

 The deployment target which may either be a traditionally hosted server, or a cloud
environment. The cloud environment may be private, like a local installation of the

4 INDENICA is an EU-funded project in which the variability modeling language of EASy-Producer was
initially designed and developed. However, this language is not INDENICA-specific but was designed with
further requirements from research and industry in mind. For more information regarding INDENICA please
visit the INDENICA website: http://indenica.eu/

EASy-Producer User Guide

Page 13

Eucalyptus5 cloud software or public, in this example we will allow connections to
Amazon6 or Azure7 cloud.

Without going into functional details of the content-sharing platform, the variabilities introduced

by content types, web container, database and deployment target allow to derive a large number

of different platform instances. However, some dependencies exist that restrict the selection of

variants to be part of a specific platform instance. These restrictions and dependencies will be

modelled in terms of constraints in the variability model in Section 4.2.1:

1) At least one content type must be present as otherwise the content-sharing platform is
useless.

2) To ensure acceptable quality of service, the maximum bit rate for video content on the
Tomcat web container is 128 kBit/s.

3) The combination of supported content types may be restricted based on the capabilities
of the web container or the deployment platform, e.g. due to load problems only a limited
number of content types may be available on the traditional deployment target.

4) Some content types may be served by a separate web container in order to configure a
simple load balancing mechanism, for example 3D content should be served by a JBoss
server. As a further extension, a web container may be configured to retrieve its content
from a specific database.

5) Content types may be transformed and the result may be shared. Such transformations
should be configured in terms of configuration chains, such as the textual representation
of the audio track of a video. As transformations may be resource-consuming and, thus,
affect the performance, on the traditional platform only simple and resource saving
implementations should be deployed while resource-consuming high-quality
transformations may be used on the cloud platforms.

This content-sharing platform product line will be developed in the following sections using EASy-

Producer. In particular, we will focus on the variability modelling, the variability implementation

and the derivation of a specific platform instance.

4.2. Defining a New Base Service Platform

In this section, we will describe the process of defining the variability of a (base) service platform

(a SPL) using EASy-Producer from the perspective of a domain engineer. We will start with the

creation of a new product line project in EASy-Producer, define the configuration space in terms

of an IVML variability model, and implement the variabilities using a variability implementation

technique. Further, we will define a corresponding build script in VIL to specify the instantiation

process of the variable artefacts. The resulting base service platform (the product line project)

will be the basis for the derivation of different content-sharing platforms by an application

engineer.

The first step towards a product line definition in EASy-Producer is to define a new product line

project. For this purpose, start the Eclipse application with the already installed EASy-Producer

tool (see Section 3 for installation details). Start the New Project Wizard by opening File � New

5
 Eucalyptus website: http://open.eucalyptus.com/
6
 Amazon cloud website: http://aws.amazon.com/de/ec2/
7
 Azure website: http://www.microsoft.com/windowsazure/

� Project. Expand the EASy-Producer category and select the entry

This opens the Product Line Project Wizard

product line project. In our example, we will use

prototypical product line. EASy suggests

However, it is not necessary to keep this prefix

product line project will be created and EASy

Editor as illustrated in Figure 5.

The Product Line Editor is the central editor in EASy

about a SPL (or a product) as well as the capabilities to derive, configure, and instantiate a

product using the different tabs

(variability model) and the implementation space (variability implementation) must

We will describe both definitions in detail in the next two sections.

4.2.1. Configuration Space Definition

A variability model defines the valid configuration space of a specific

implemented in the artefacts. In EASy

thus, the configuration space of the content

configuring individual service platforms in terms of defining valid value combinations for the

configuration space elements (the IVML decision variables).

In EASy-Producer, each product line project comes with its own IVML

and edited using the IVML-Editor

name of the file is composed of the name of the product line and the version number (here

initially “0”). In our example, double

IVML-Editor.

By default, each IVML-file has a mandatory project element and

shown in Figure 6. The project element is the top

the configuration space of a certain software project (product line or product). The version

element defines the current state of evolution of a project and, thus, identifies a specific (state of

a) project. The default version is “v0”.

8 See the IVML language specification (cf.

Figure

EASy-Producer User Guide

Page 14

Producer category and select the entry New EASy

ine Project Wizard that requires the definition of a name for the new

product line project. In our example, we will use PL_Content_Sharing

. EASy suggests naming the newly created project with a prefix (PL_)

it is not necessary to keep this prefix. Enter the name and click the

product line project will be created and EASy-Producer will automatically open the

is the central editor in EASy-Producer as it provides the basic information

(or a product) as well as the capabilities to derive, configure, and instantiate a

tabs shown in Figure 5. For this purpose, the configuration space

(variability model) and the implementation space (variability implementation) must

We will describe both definitions in detail in the next two sections.

Configuration Space Definition

A variability model defines the valid configuration space of a specific SPL. The variabilities are

implemented in the artefacts. In EASy-Producer, we use IVML8 for defining a variability model and,

thus, the configuration space of the content-sharing platform. This model will be the basis for

configuring individual service platforms in terms of defining valid value combinations for the

figuration space elements (the IVML decision variables).

Producer, each product line project comes with its own IVML-file, which can be opened

Editor. The IVML-file is located in the EASy-folder

the file is composed of the name of the product line and the version number (here

initially “0”). In our example, double-click the file PL_Content_Sharing_0 in order to open the

file has a mandatory project element and a mandatory version number as

. The project element is the top-level element of each IVML file and identifies

of a certain software project (product line or product). The version

element defines the current state of evolution of a project and, thus, identifies a specific (state of

a) project. The default version is “v0”.

See the IVML language specification (cf. 3.4) for a detailed description of this language.

Figure 5: Running Example – The Product Line Editor.

New EASy-Producer Project.

that requires the definition of a name for the new

 as the name of our

the newly created project with a prefix (PL_).

. Enter the name and click the Finish button. The

Producer will automatically open the Product Line

Producer as it provides the basic information

(or a product) as well as the capabilities to derive, configure, and instantiate a

. For this purpose, the configuration space

(variability model) and the implementation space (variability implementation) must be defined.

. The variabilities are

for defining a variability model and,

sharing platform. This model will be the basis for

configuring individual service platforms in terms of defining valid value combinations for the

file, which can be opened

folder of the project. The

the file is composed of the name of the product line and the version number (here

in order to open the

a mandatory version number as

level element of each IVML file and identifies

of a certain software project (product line or product). The version

element defines the current state of evolution of a project and, thus, identifies a specific (state of

) for a detailed description of this language.

We characterize the configuration space of the variant

specifying the variability model in IVML.

complete model can be found in the appendix

represent the different content types, container types, etc., which an application may support in

general (lines 5-8). These enumerations are the basis for specifying the type, for example, of a

specific content (lines 10-12). The basic content com

the specific configuration options for

other compounds are modelled according to the running example (cf.

the outline on the right side of

include decision variables of the previously defined (compound) types representing the complete

set of configuration options for the content

type Application and one of type

variables for configuring a specific content

displayed in the IVML Configuration Editor

editor in detail in the process of product configuration in Section

In addition to the variability model, we will also define comments for the decision variables in

order to support the application engineer in the configuration of a valid product.

to create a new text-file in the EASy

Figure 7:

Figure

EASy-Producer User Guide

Page 15

We characterize the configuration space of the variant-enabled content-sharing base platform by

specifying the variability model in IVML. Figure 7 shows a snippet of the variability model (

complete model can be found in the appendix A.1). First, we define several enumeratio

represent the different content types, container types, etc., which an application may support in

8). These enumerations are the basis for specifying the type, for example, of a

12). The basic content compound must be refined in order to represent

the specific configuration options for Video, 3D (ThreeD), and BLOB contents (lines 14

other compounds are modelled according to the running example (cf. Section

the outline on the right side of Figure 7, the two types Application and

include decision variables of the previously defined (compound) types representing the complete

uration options for the content-sharing base platform. Thus, two variables (one of

and one of type TargetPlatform) are defined as the main decision

variables for configuring a specific content-sharing platform variant. These variables will also be

IVML Configuration Editor tab of the Product Line Editor. We will discuss this

he process of product configuration in Section 4.3.1.

In addition to the variability model, we will also define comments for the decision variables in

order to support the application engineer in the configuration of a valid product.

EASy-folder of the product line project. For this purpose, right

: Running Example – The Variability Model (snippet).

Figure 6: Running Example – The IVML Editor.
sharing base platform by

shows a snippet of the variability model (the

). First, we define several enumerations that

represent the different content types, container types, etc., which an application may support in

8). These enumerations are the basis for specifying the type, for example, of a

pound must be refined in order to represent

contents (lines 14-27). The

Section 4.1). As indicated in

and TargetPlatform

include decision variables of the previously defined (compound) types representing the complete

sharing base platform. Thus, two variables (one of

) are defined as the main decision

sharing platform variant. These variables will also be

. We will discuss this

In addition to the variability model, we will also define comments for the decision variables in

order to support the application engineer in the configuration of a valid product. The first step is

of the product line project. For this purpose, right-click

on the EASy-folder and select

variability model (the project-name in IVML) followed by the version number to unambiguously

link the comments to the desired decision variables. Thus, enter

PL_Content_Sharing_0.text

will open the new text-file with a simple text

definition will start with the name of the variability model (the project name) followed by “::”, the

name of the decision variable for which we want to define the comment, and an equal

The actual comment is defined in plain text after the “=”.

The result of the comment-definition is shown in

decision variables “app” and “plat” of the running example (cf.

the IVML Configuration Editor of

Finally, the variability model, and, thus, the configuration space of the content

is defined. We will use this model in Section

platform variant. However, in the next section we will first discuss the implementation of the

variabilities. This includes the relation of the decision variables to the implementation i

automatically instantiate different platform variants.

4.2.2. Implementation Space Definition

The implementation space of a specific

instantiated according to a specific configuration. The actual implem

depends on the applied variability implementation techniques

to realize variability, e.g., using pre

EASy-Producer different VITs ca

defined in a VIL9 build script. However,

which actually applies the VIT

Producer can be found in the EASy

9 See the VIL language specification (cf.

b) Decision variables and comments in the IVML

Figure 8: Running Example

EASy-Producer User Guide

Page 16

and select New � File. The name of the file must match the name of the

name in IVML) followed by the version number to unambiguously

link the comments to the desired decision variables. Thus, enter

PL_Content_Sharing_0.text as the name of the new file and click the

file with a simple text-editor to enter the comments. Each comment

definition will start with the name of the variability model (the project name) followed by “::”, the

ble for which we want to define the comment, and an equal

The actual comment is defined in plain text after the “=”.

definition is shown in Figure 8. We defined two comments for the two

decision variables “app” and “plat” of the running example (cf. Figure 8a)), which are displayed in

of the Product Line Editor (cf. Figure 8b)).

Finally, the variability model, and, thus, the configuration space of the content

is defined. We will use this model in Section 4.3.1 for configuring a specific content

platform variant. However, in the next section we will first discuss the implementation of the

variabilities. This includes the relation of the decision variables to the implementation i

automatically instantiate different platform variants.

Implementation Space Definition

The implementation space of a specific SPL represents all variable artefacts that can be

instantiated according to a specific configuration. The actual implementation of these artefacts

depends on the applied variability implementation techniques (VITs). A VIT is a specific approach

to realize variability, e.g., using pre-processor directives, aspects, or any other techniques

can be applied and combined. Their application and combination is

However, some VITs may be realized by an individual instantiator,

VIT. A detailed discussion on the concept of instantiators in EASy

Producer can be found in the EASy-Producer developers guide (cf. Section

See the VIL language specification (cf. 3.4) for a detailed description of this language.

a) Comment-definition in the text-file.

b) Decision variables and comments in the IVML configuration editor

Running Example - Definition of Decision Variable Comments

. The name of the file must match the name of the

name in IVML) followed by the version number to unambiguously

link the comments to the desired decision variables. Thus, enter

file and click the Finish button. We

editor to enter the comments. Each comment-

definition will start with the name of the variability model (the project name) followed by “::”, the

ble for which we want to define the comment, and an equal-sign (“=”).

. We defined two comments for the two

a)), which are displayed in

Finally, the variability model, and, thus, the configuration space of the content-sharing application

for configuring a specific content-sharing

platform variant. However, in the next section we will first discuss the implementation of the

variabilities. This includes the relation of the decision variables to the implementation in order to

represents all variable artefacts that can be

entation of these artefacts

is a specific approach

other techniques. In

Their application and combination is

realized by an individual instantiator,

. A detailed discussion on the concept of instantiators in EASy-

Producer developers guide (cf. Section 3.4). In the running

detailed description of this language.

Definition of Decision Variable Comments.

example, we will use the Velocity instantiator

EASy-Producer installation.

All product line (and product) source code is located in the

as shown in Figure 9. The Velocity instantiator provides pre

can be applied in terms of adding Velocity

of Figure 9, the deployment platform and the public switch will be defined accordingly to the

values of platTarget and the

variables are nested variables of the platform variable

notation. In order to guarantee that Velocity will find these variables, the instantiator

dollar-sign in front of the variable declarations in the code.

The next step is to define the VIL build script. Open the

clicking the VIL-file in the EASy

Figure 10 shows the VIL build script of this example

appendix A.2). This script is rather simple: the first rule

target project (the product project) to guarantee that only the most recent instantiated artefacts

are present in the final product. The second rule

rule defines clean to be a precondition (guaranteeing that the target will be cleaned before the

actual instantiation). The only action

path to the generic source artefacts, the target path, and the configuration as

Figure

Figure 9: Running Example

EASy-Producer User Guide

Page 17

example, we will use the Velocity instantiator as it is one of the default instantiators of the basic

All product line (and product) source code is located in the src folder of the product line project

. The Velocity instantiator provides pre-processor functionality to Java and

can be applied in terms of adding Velocity-specific statements to plain Java code. In lines 5 and 6

, the deployment platform and the public switch will be defined accordingly to the

and the isPublic variables (cf. the variability model in

variables are nested variables of the platform variable plat. Thus, they are accessed using “

notation. In order to guarantee that Velocity will find these variables, the instantiator

sign in front of the variable declarations in the code.

The next step is to define the VIL build script. Open the VIL Build Language

EASy-folder. The file has the name PL_Content_Sharing_0.vil

shows the VIL build script of this example (this build script can also

This script is rather simple: the first rule clean deletes all source artefacts in the

target project (the product project) to guarantee that only the most recent instantiated artefacts

are present in the final product. The second rule main is the entry-point for the VIL engine. This

to be a precondition (guaranteeing that the target will be cleaned before the

actual instantiation). The only action main defines is the call of the Velocity instantiator

e artefacts, the target path, and the configuration as

Figure 10: Running Example – The VIL Build Script.

Running Example – The Variability Implementation (snippet)

as it is one of the default instantiators of the basic

folder of the product line project

processor functionality to Java and

specific statements to plain Java code. In lines 5 and 6

, the deployment platform and the public switch will be defined accordingly to the

variables (cf. the variability model in Figure 7). Both

. Thus, they are accessed using “-”-

notation. In order to guarantee that Velocity will find these variables, the instantiator requires a

anguage Editor by double

PL_Content_Sharing_0.vil.

also be found in the

deletes all source artefacts in the

target project (the product project) to guarantee that only the most recent instantiated artefacts

point for the VIL engine. This

to be a precondition (guaranteeing that the target will be cleaned before the

defines is the call of the Velocity instantiator with the

e artefacts, the target path, and the configuration as parameters.

The Variability Implementation (snippet).

Finally, the implementation space and the corresponding build script are defined

content-sharing application variants accordingly to a configuration. On this basis, we will derive a

new product from this product line in the next section.

4.3. Deriving a Domain-Specific Service Platform

In this section, we will describe the process of deriving a new domain

software product line defined in EASy

engineer and start with the derivation of a new product line member

project), configure the product based on the variability model defined in Section

instantiate the product line artefacts accordingly. This will result in a specific content

application variant with the desired functionalities ready for use.

The first step towards an instantiated domain

the previously defined base platform product line. For this purpose open the

by right clicking on the product line project

Project Configuration Editor tab click the

for the new member, and click the

Audio_Sharing_App as the name of the new member. A new produ

created and the corresponding

In the new product line member project, we will configure the desired functionalities of our

specific audio content-sharing platform. This configuration will be used to finally instantiate the

domain-specific platform. We will describe both steps in detail in the next two sections.

4.3.1. Configuration of a Domain

A product configuration (in this example th

platform) is a set of configured elements. In IVML configured elements are specified by assigning

specific values to the elements in the configuration space, i.e. the decision variables, the

attributes, etc. The validity of a configuration is checked against the constraints of the variability

model using the built-in reasoning mechanism. The valid product configuration provides the basis

for the (automated) instantiation of the corresponding product artefacts.

10 In EASy-Producer, we do not distinguish between a product line infrastructure and a final product. Both
are simply projects that may contain more or less variability (in case of a product none)

Figure

EASy-Producer User Guide

Page 18

space and the corresponding build script are defined

sharing application variants accordingly to a configuration. On this basis, we will derive a

roduct line in the next section.

Specific Service Platform

In this section, we will describe the process of deriving a new domain-specific platform from a

software product line defined in EASy-Producer. We will adopt the perspective of a

and start with the derivation of a new product line member10 (in this case, the product

project), configure the product based on the variability model defined in Section

instantiate the product line artefacts accordingly. This will result in a specific content

application variant with the desired functionalities ready for use.

rds an instantiated domain-specific platform is to derive a new member from

the previously defined base platform product line. For this purpose open the

product line project and select Edit Productline in the co

tab click the Derive new Product Line Member button, define a name

for the new member, and click the Ok button. In our running example, we will use

as the name of the new member. A new product line project will be

created and the corresponding Product Line Editor will open automatically as shown in

In the new product line member project, we will configure the desired functionalities of our

g platform. This configuration will be used to finally instantiate the

specific platform. We will describe both steps in detail in the next two sections.

Configuration of a Domain-Specific Service Platform

A product configuration (in this example the configuration of the domain

platform) is a set of configured elements. In IVML configured elements are specified by assigning

specific values to the elements in the configuration space, i.e. the decision variables, the

he validity of a configuration is checked against the constraints of the variability

in reasoning mechanism. The valid product configuration provides the basis

for the (automated) instantiation of the corresponding product artefacts.

Producer, we do not distinguish between a product line infrastructure and a final product. Both

are simply projects that may contain more or less variability (in case of a product none)

Figure 11: Running Example – The Product Derivation.

space and the corresponding build script are defined to instantiate

sharing application variants accordingly to a configuration. On this basis, we will derive a

specific platform from a

Producer. We will adopt the perspective of an application

(in this case, the product

project), configure the product based on the variability model defined in Section 4.2.1, and

instantiate the product line artefacts accordingly. This will result in a specific content-sharing

specific platform is to derive a new member from

the previously defined base platform product line. For this purpose open the Product Line Editor

in the context menu. In the

button, define a name

button. In our running example, we will use

ct line project will be

will open automatically as shown in Figure 11.

In the new product line member project, we will configure the desired functionalities of our

g platform. This configuration will be used to finally instantiate the

specific platform. We will describe both steps in detail in the next two sections.

e configuration of the domain-specific service

platform) is a set of configured elements. In IVML configured elements are specified by assigning

specific values to the elements in the configuration space, i.e. the decision variables, the

he validity of a configuration is checked against the constraints of the variability

in reasoning mechanism. The valid product configuration provides the basis

Producer, we do not distinguish between a product line infrastructure and a final product. Both
are simply projects that may contain more or less variability (in case of a product none).

EASy-Producer provides two ways of configuring the elements of an IVML variability model: either

use the IVML Editor by double

example the Audio_Sharing_App_0.ivml

imported project (the product line project) manually, or use the

the Product Line Editor. In our example, we will use the

configuration task as it includes all configurable elements of the imported project and provides

the possible values for each of these elements automatically (we will discuss the configuration

editor in detail in Section 5.2.2).

configurable elements of our audio content

The next step is to check whether the configuration is valid. For this purpose, click on the

Product button of the IVML Configuration Editor

product is valid, it is ready for instantiation. If it is not valid, the configuration must be revised in

order to guarantee that the resulting product will work appropriately. In case of an invalid

configuration, EASy-Producer will issue a description of the configuration p

possible error location in the current configuration.

Finally, the product is configured and ready for instantiation.

4.3.2. Instantiation of a Domain

Product instantiation describes the process of resolving the vari

according to a product configuration. This process results in the product artefacts that are mostly

variation-free and ready to use. However, in some situations it is desired to resolve some of the

variabilities at a later point in time, for example, at initialization time or runtime. In such a case,

the instantiation process will leave these variabilities as

EASy-Producer provides a fully automated instantiation process, which is based on the variability

model, the current configuration and

sections, such as the implementation space and

configuration (cf. Section 4.3.1

Section 4.2.1). Thus, the last step is to

Figure 12

EASy-Producer User Guide

Page 19

Producer provides two ways of configuring the elements of an IVML variability model: either

by double-clicking the IVML file of the derived product line member (in our

Audio_Sharing_App_0.ivml file) in order to configure the elements of the

imported project (the product line project) manually, or use the IVML Configuration Editor

. In our example, we will use the IVML Configuration Editor

ion task as it includes all configurable elements of the imported project and provides

the possible values for each of these elements automatically (we will discuss the configuration

). Figure 12 illustrates the IVML Configuration Editor,

audio content-sharing application.

The next step is to check whether the configuration is valid. For this purpose, click on the

IVML Configuration Editor. This executes the built-in IVML reasoning. If the

t is ready for instantiation. If it is not valid, the configuration must be revised in

order to guarantee that the resulting product will work appropriately. In case of an invalid

Producer will issue a description of the configuration problem and propose a

possible error location in the current configuration.

Finally, the product is configured and ready for instantiation.

Instantiation of a Domain-Specific Service Platform

Product instantiation describes the process of resolving the variability of product line artefacts

according to a product configuration. This process results in the product artefacts that are mostly

free and ready to use. However, in some situations it is desired to resolve some of the

point in time, for example, at initialization time or runtime. In such a case,

the instantiation process will leave these variabilities as-is.

Producer provides a fully automated instantiation process, which is based on the variability

rent configuration and VIL build script. We defined this information in the previous

sections, such as the implementation space and build script (cf. Section 4.2.2

4.3.1). This relies in turn on the configuration space

he last step is to click the Instantiate Product button in the

: Running Example – The IVML Configuration Editor.

Producer provides two ways of configuring the elements of an IVML variability model: either

of the derived product line member (in our

file) in order to configure the elements of the

IVML Configuration Editor tab of

IVML Configuration Editor. This eases the

ion task as it includes all configurable elements of the imported project and provides

the possible values for each of these elements automatically (we will discuss the configuration

IVML Configuration Editor, including the

The next step is to check whether the configuration is valid. For this purpose, click on the Validate

in IVML reasoning. If the

t is ready for instantiation. If it is not valid, the configuration must be revised in

order to guarantee that the resulting product will work appropriately. In case of an invalid

roblem and propose a

ability of product line artefacts

according to a product configuration. This process results in the product artefacts that are mostly

free and ready to use. However, in some situations it is desired to resolve some of the

point in time, for example, at initialization time or runtime. In such a case,

Producer provides a fully automated instantiation process, which is based on the variability

. We defined this information in the previous

4.2.2) and the product

). This relies in turn on the configuration space definition (cf.

button in the IVML

EASy-Producer User Guide

Page 20

Configuration Editor. This will yield the instantiated artefacts from the product line project and

inserts them into the product project while resolving the variabilities.

EASy-Producer User Guide

Page 21

5. EASy-Producer in Detail

In this section, we will describe EASy-Producer in detail. This includes the description of the

product line project structure in Section 5.1 as well as the different editors in Section 5.2.

5.1. The Product Line Project Structure

In this section, we will discuss the product line project structure of EASy-Producer. The basic

structure of each product line project equals the general structure of Java-project in Eclipse. The

only difference is in the EASy-folder of the product line project. This folder contains all EASy-

Producer files. These files are:

File Icon Description

 The IVML-file, which contains the variability model described in the INDENICA
Variability Modelling Language, or a specific configuration.
This file is mandatory and will be automatically created if a new product line project is
created.

 The text-file, which contains additional comments for the decision variables defined in
the variability model. Please note that we use a “T” for “Text” instead of a “C” for
“Comments” as this may be confused with “Configuration”.
This file is optional and has to be created manually.

 The VIL build script file, which contains the specification of the instantiation process
of the variable artefacts of the product line project.
This file is mandatory and will be automatically created if a new product line project is
created.

 The VIL template file, which contains the definition of generic templates that can be
applied during the instantiation process to create or manipulate specific artefacts and
their content.
This file is optional and has to be created manually.

All files introduced above can be created manually (also those that are mandatory) by clicking File

� New � Other. In the wizard, open the EASy-Producer-folder and select the file you want to

create. Please note that we recommend adding such files to the EASy-folder of the product line

project as this is the default folder for EASy-specific files. Further, the creation of a variability

model, a build script, and templates are supported by individual (text) editors that will open by

simply double-clicking the respective file in the EASy-folder.

5.2. The Product Line Editor

The Product Line Editor is the central editor in EASy-Producer as it provides the basic information

about a SPL (or a product) as well as the capabilities to derive, configure, and instantiate a

product using the different sub-editors (tabs). This editor opens automatically if a new product

line project is created. In order to open the editor manually, right click on the product line project

and select Edit Product Line.

5.2.1. The Project Configuration Editor

The Project Configuration Editor

project as well as the general action

Editor Element

“Validate Constraint” Button

“Pull Configuration” Button

“Add/remove predecessor” Button

“Derive new Product Line Member
Button

Advanced Settings (Reasoner Timeout)

EASy-Producer User Guide

Page 22

The Project Configuration Editor

Project Configuration Editor provides the general configuration options of a product line

project as well as the general actions that can be performed.

Description

 Validates all constraints in the selected variability
model using the reasoner.

In case that a new predecessor is added (see below)
the configuration of the predecessor is integrated
into the configuration of the current product line
project.

Button In a Multi Software Product Line scenario (cf.
Section 2.3), a new product line project, e.g. a
product line product, is initially derived from a single
parent product line project, e.g. the base product
line. In order to integrate additional parents
button will open a dialog to select the desired
product line projects of the current workspace in
Eclipse. Please note that the addition of new parent
product line projects also requires the Pull
Configuration action (see above) to integrate the
configurations of the selected parents into the
current product line project.

Derive new Product Line Member” Derives a new product line project based on the
current product line project. For example, this
creates a new product project based on the
product line project.

Advanced Settings (Reasoner Timeout) Restricts the time for the reasoner to calculate the
validity of a specific configuration to the defined
time in milliseconds.

Figure 13: Project Configuration Editor.

ptions of a product line

Validates all constraints in the selected variability

In case that a new predecessor is added (see below)
the configuration of the predecessor is integrated
into the configuration of the current product line

In a Multi Software Product Line scenario (cf.
), a new product line project, e.g. a

product line product, is initially derived from a single
parent product line project, e.g. the base product
line. In order to integrate additional parents, this
button will open a dialog to select the desired
product line projects of the current workspace in

clipse. Please note that the addition of new parent
product line projects also requires the Pull
Configuration action (see above) to integrate the

figurations of the selected parents into the

Derives a new product line project based on the
current product line project. For example, this
creates a new product project based on the base

Restricts the time for the reasoner to calculate the
validity of a specific configuration to the defined

EASy-Producer User Guide

Page 23

Model Selection In case that multiple variability models are available,

this option enables the selection of the desired
variability model as the basis for the configuration
of the current product line project.

5.2.2. The IVML Configuration Editor

The IVML Configuration Editor supports the configuration of individual products or partially

configured product lines by providing a graphical user interface for the assignment of values to

decision variables defined in the variability model. This editor is also used to start the instantiation

process after the configuration of a specific product.

Editor Element Description

“Validate Product” Button Validates the current configuration of this product
line project using the reasoner.

“Instantiated Product” Button Instantiates the current project line project (partial
product line or product) based on the current
(partial) configuration.

“Propagate Values” Button Assigns currently unassigned decision variables of
the configuration automatically. This automation
requires the assignment of a subset of the available
decision variables and the relation of these variables
to the unassigned variables in terms of constraints

Figure 14: IVML Configuration Editor.

EASy-Producer User Guide

Page 24

in the variability model.
“Freeze All” Button Freezes all assigned decision variables of the current

configuration. The values of frozen decision
variables cannot be altered afterwards. For details
on the concept of freezing, see the IVML language
specification (cf. Section 3.4).

“Undo Changes” Button Reverts all changes since the last saving of the
current configuration.

Filtering Options (Filter by name) Filters the available decision variables of the current
configuration by name.

Filtering Options (Filter by project) Filters the available decision variables of the current
configuration by the project in which they are
defined.

Filtering Options (Filter by attribute) Filters the available decision variables of the current
configuration by an attribute and the specific
attribute value. For details on the concept of
attributes, see the IVML language specification (cf.
Section 3.4).

Filtering Options (Filter by state) Filters the available decision variables of the
configuration by their state. The available states are:
unassigned, assigned, and frozen.

“Decision Name” Column The name of the decision variable.

“Current value” Column The current value of the decision variable.

“+” Column Adds a new element to a sequence or a set of
decision variables.

“-“ Column Deletes an existing element from a sequence or a
set of decision variables.

“Freeze” Column Freezes the decision variable in the row of the
current cell.

“Comment” Column Displays additional information regarding the
purpose and the configuration options of the
decision variable. This requires the definition of a
text-file (cf. Section 4.2.1).

“Errors” Column Displays errors, for example the violation of a
constraint of the variability model by the current
value of the decision variable in that row. This
requires the validation of the current configuration.

EASy-Producer User Guide

Page 25

A. Appendix

A.1. Running Example IVML-File

project PL_Content_Sharing {

 version v0;

 enum ContentType {Text, Video, Audio, ThreeD, BLOB};

 enum ContainerType {Tomcat, IIS, JBoss};

 enum DatabaseType {AzureSQL, AmazonS3, MySQL};

 enum DeploymentTarget {Traditional, Eucalyptus, Amazon, Azure};

 compound Content {

 ContentType type = ContentType.Audio;

 }

 compound VideoContent refines Content {

 Integer bitrate;

 Content.type = ContentType.Video;

 }

 compound Container {

 ContainerType type = ContainerType.Tomcat;

 }

 compound Database {

 DatabaseType type = DatabaseType.MySQL;

 }

 compound Application {

 Content appContent;

 Container appContainer;

 Database appDatabase;

 }

 compound TargetPlatform {

 DeploymentTarget platTarget;

 Boolean isPublic;

 }

 compound ThreeD refines Content {

 refTo(Container) threedContainer;

 Content.type = ContentType.ThreeD;

 }

 compound BLOB refines Content {

 refTo(Container) blobContainer;

 Content.type = ContentType.Audio;

 }

 Application app;

 TargetPlatform plat;

 plat.platTarget == DeploymentTarget.Traditional implies

 app.appDatabase.type == DatabaseType.MySQL;

 plat.platTarget == DeploymentTarget.Eucalyptus implies

 app.appDatabase.type == DatabaseType.AmazonS3;

EASy-Producer User Guide

Page 26

 plat.platTarget == DeploymentTarget.Amazon implies

 app.appDatabase.type == DatabaseType.AmazonS3;

 plat.platTarget == DeploymentTarget.Azure implies

 app.appDatabase.type == DatabaseType.AzureSQL;

}

A.2. Running Example VIL Build Script-File

vilScript PL_Content_Sharing (Project source, Configuration conf, Project target)

{

 version v0;

 Path source_src = "$source/src";

 Path target_src = "$target/src";

 clean() = : {

 map (artifact = target_src.selectAll()) {

 artifact.delete();

 }

 }

 main(Project source, Configuration conf, Project target) = : clean() {

 velocityInstantiator(source_src, target_src, conf);

 }

}

Stiftung University of Hildesheim
Marienburger Platz 22

31141 Hildesheim
Germany

EASy

Engineering Adaptive Systems

Developer

Stiftung University of Hildesheim

Software Systems Engineering (SSE)
Institute for Computer

Faculty for Mathematics, Natural
Science, Economics, and Computer

Science

EASy-Producer

Engineering Adaptive Systems

Developers Guide

Version 1.0

20.09.2013

Software Systems Engineering (SSE)

Institute for Computer Science
Faculty for Mathematics, Natural

Science, Economics, and Computer
Science

Engineering Adaptive Systems

EASy-Producer Developers Guide

Page 2

Version

0.1 28.08.2012 Initial version
0.2 10.09.2012 Reasoning section moved to the end of the document, prerequisite and

installation added, debug flags added to section 3
0.3 04.12.2012 Preface added, Section 3.1.1 added
0.4 04.03.2013 Instantiator and reasoning section updated
0.5 01.04.2013 General corrections, e.g. spelling.
0.6 15.08.2013 Initial inclusion of VIL
1.0 20.09.2013 VIL section updated, according updates to the instantiator section

EASy-Producer Developers Guide

Page 3

Preface

EASy-Producer is a Software Product Line Engineering tool developed by the Software Systems

Engineering (SSE) group at the University of Hildesheim.

The tool is available as an Eclipse plug-in under the terms of the Eclipse Public License (EPL)

Version 1.0

The SSE group hosts the following EASy-Producer update site for easy installation and updates:

http://projects.sse.uni-hildesheim.de/easy/

©2012 Software Systems Engineering (SSE) Group, University of Hildesheim, Germany.

EASy-Producer Developers Guide

Page 4

Table of Contents

1. Introduction .. 5

2. Installation .. 6

2.1. Prerequisites ... 6

2.2. Installation: Step by Step ... 6

2.3. Technical Recommendations ... 8

2.4. Further Guides and Specifications ... 8

3. EASy-Producer Extensions .. 10

3.1. Implementing a New Instantiator .. 10

3.1.1. Instantiation Concept in EASy-Producer ... 11

3.1.2. Eclipse Plug-in Project Creation and Configuration for New Instantiators 14

3.1.3. Instantiator Implementation .. 18

3.1.4. Instantiator Integration ... 20

3.2. Implementing a New VIL Artefact Type ... 21

3.2.1. The VIL Artefact Model in EASy-Producer .. 21

3.2.2. Eclipse Plug-in Project Creation and Configuration for New Artefacts 23

3.2.3. Artefact Implementation .. 23

3.3. Implementing a New Reasoner ... 28

3.3.1. Eclipse Plug-in Project Creation and Configuration for New Reasoners 28

3.3.2. Reasoner Implementation ... 29

3.3.3. Reasoner Integration .. 32

EASy-Producer Developers Guide

Page 5

1. Introduction
EASy-Producer1 is a Software Product Line Engineering (SPLE) tool which facilities the most recent

trends and concepts in SPLE, such as large-scale Multi-Software Product Lines (MSPL), product

line hierarchies, and staged configuration and instantiation. The focus of this tool is to support

these rather complex concepts in an easy-to-use way. Thus, this tool allows developing a first

prototypical Software Product Line (SPL) within minutes. Further, EASy-Producer is a research

prototype for demonstrating new approaches to SPLE in general and, in particular approaches for

simplifying the development of SPLs developed by the Software Systems Engineering group (SSE)

at the University of Hildesheim.

This live-document provides a developers guide that introduces the reader to the basic

capabilities of EASy-Producer and how to develop further extensions to this tool. In Section 2, we

will give guidance for the first steps with EASy-Producer. This section includes the mandatory

prerequisites, the installation guide, and additional recommendations for running the tool

successfully. This also provides the development environment, in which extensions for EASy-

Producer will be created.

Section 3 will describe the different extension mechanisms of EASy-Producer. This includes the

implementation of new instantiators, new artefact types, and new reasoners. For each of these

extensions, we will briefly introduce the basic concepts and provide a step-wise example of how

to create a new extension of the specific type.

1 EASy is an abbreviation for Engineering Adaptive Systems.

EASy-Producer Developers Guide

Page 6

2. Installation
In this section, we will describe the installation of EASy-Producer. In order to guarantee a

successful installation, we will introduce a set of mandatory prerequisites. This will be part of

Section 2.1 in which we will set up the environment for EASy-Producer. In Section 2.2, we will

describe the installation of the tool in a step-wise manner using the Eclipse update site

mechanism and the EASy-Producer update site. Finally, Section 2.3 will give some technical

recommendations, while Section 2.4. introduces additional guides and specifications for EASy-

Producer.

2.1. Prerequisites
EASy-Producer is developed as an Eclipse2 plug-in and requires Xtext3 version 2.3.1. Thus, in

general, any Eclipse installation with Xtext version 2.3.1 is fine for installing and running EASy-

Producer. However, we cannot guarantee that any combination of Eclipse and Xtext version 2.3.1

will work with EASy-Producer. Thus, we propose the following Eclipse versions as they are tested

with EASy-Producer (and Xtext version 2.3.1):

 Eclipse 3.6 (Helios)

 Eclipse 3.7 (Indigo)

 Eclipse 4.0 (Juno)

We recommend using Eclipse 3.7 (Indigo) as this is the most exhaustively tested version of Eclipse

with EASy-Producer. Download an Eclipse package from http://www.eclipse.org/downloads/.

Please note that Eclipse 4.2 does not work with Xtext 2.3.1 due to incompatible dependencies.

Further, Xtext version 2.3.1 has to be installed in the newly downloaded Eclipse instance. Typically,

this is installed automatically when installing EASy-Producer due to plug-in dependencies.

However, we encountered situations in which these dependencies were not automatically

resolved. Thus, the EASy-Producer update site includes the required Xtext features. We will

describe the complete installation in the next Section.

2.2. Installation: Step by Step

The SSE group hosts an EASy-Producer update site for easy installation and updates. Thus, the

first step for installing EASy-Producer is to define a new update site in Eclipse. For this purpose,

start Eclipse and open the Install New Software dialog by clicking Help � Install New Software… as

shown in Figure 1:

2 Eclipse website: www.eclipse.org/
3 Xtext website: http://www.eclipse.org/Xtext/

The Install Dialog will appear (cf.

to be added. Thus, click on the Add…

The Add Repository dialog requires the definition of a name for the new update site and a location

as illustrated in Figure 2. The name is up to the user. For example, enter “

site”. The location is the URL of the update site:

EASy-Producer update site: http://projects.sse.uni

Finish the definition of the new update site by clicking the

Figure

Figure

EASy-Producer Developers Guide

Page 7

Dialog will appear (cf. Figure 2). In this dialog, a new location for available software has

Add… button in the upper right location of the dialog.

dialog requires the definition of a name for the new update site and a location

. The name is up to the user. For example, enter “EASy

”. The location is the URL of the update site:

http://projects.sse.uni-hildesheim.de/easy/

Finish the definition of the new update site by clicking the OK button of the Add Repository

Figure 1: Open the “Install New Software” dialog

Figure 2: Add a new location for software updates

). In this dialog, a new location for available software has

button in the upper right location of the dialog.

dialog requires the definition of a name for the new update site and a location

EASy-Producer update

Add Repository dialog.

EASy-Producer Developers Guide

Page 8

The Install Dialog will now contain multiple categories. If you are installing EASy-Producer for the

first time and do not know which features to select, select the Quick Installation of EASy-Producer

category. Further, select the categories Xtend-2.3.1 and Xtext-2.3.1 to install the required Xtext

version (if not done before). This will install all required components automatically.

For more experienced users, select the categories and features as needed and click the Next

button. Follow the steps for installing EASy-Producer (accept the license agreement and ignore

the security warning for installing software of unsigned content, etc.), and restart Eclipse as

prompted.

Finally, you have successfully installed the EASy-Producer.

2.3. Technical Recommendations
In order to avoid memory problems while using EASy-Producer, we recommend increasing the

memory of the Eclipse application in which EASy-Producer is executed. The memory problems are

due to Xtext which requires more memory than defined in a typical Eclipse configuration.

Open the “eclipse.ini” file in your Eclipse directory and enter the following parameters at the end

of the file:

-vmargs

-Xms40m

-Xmx512m

-XXMaxPermSize=128m

2.4. Further Guides and Specifications
EASy-Producer provides two expressive languages that support the creation of required software

product line artefacts:

The INDENICA Variability Modelling Language (IVML) is and expressive, textual variability

modelling language, which provides basic and advanced modelling capabilities for the definition

of variability models. In order to define such a model based on IVML, we provide the IVML

language specification. This specification is part of the EASy-Producer installation and can be

found in the Eclipse Help.

The Variability Implementation Language (VIL) is a textual language for the flexible specification

of the instantiation process of a software product line. This language consists (beside other parts)

of the VIL build language and the VIL template language. The former language provides modelling

elements for the specification of the individual build tasks of the instantiation process, while the

latter language supports the definition of templates that can be applied to specific artefacts, for

example, to manipulate their content, as part of the instantiation process. The corresponding VIL

language specification is also part of the EASy-Producer installation and can be found in the

Eclipse Help.

EASy-Producer Developers Guide

Page 9

Further, EASy-Producer provides a user guide, which introduces the reader to the basic concepts

and the different capabilities of the tool. The EASy-Producer User Guide can be found in the

Eclipse Help as well.

The EASy-Producer user guide, the EASy-Producer developers guide, as well as the IVML and the

VIL language specification are also available as PDFs on the EASy-Producer update site.

EASy-Producer Developers Guide

Page 10

3. EASy-Producer Extensions
EASy-Producer provides an extension point mechanism to add additional functionality to the basic

implementation. An extension is always implemented as an Eclipse plug-in and may provide

customer-specific functionalities in terms of individual instantiators, artefact types, or reasoners.

Custom instantiators may be capable of instantiating artefacts of different types or in a specific

way. Artefact types will enable the definition and manipulation of specific artefacts as part of the

instantiation process. A new reasoner may provide new or adapted capabilities to check, for

example, whether a variability model or a specific product configuration is valid. In order to ease

the development and integration of such extensions, EASy-Producer is capable of automatically

searching and integrating new plug-ins through Eclipse Dynamic Services4. Thus, developers only

have to provide the necessary information to EASy-Producer to include their desired

functionalities.

In this section, we will describe how to implement extensions to the EASy-Producer tool. In

Section 3.1, we will describe the implementation of a new instantiator and its integration in EASy-

Producer. Section 3.2 will describe the implementation and integration of a new artefact type,

while in Section 3.3, we will implement and integrate a new reasoner. Each section will provide

detailed guidance from project creation and configuration to the final intragetion of the custom

plug-ins in EASy-Producer.

In order to debug errors and failures during the development of EASy-Producer extensions, add

the following flags to the “Run Configuration” of your Eclipse as needed (introduce the new flags

with a single prefixed “-D” in the Run Configuration):

 -debug: This flag will print information on the variability model of EASy-Producer

 -log: This flag will print EASy-internal debug messages, such as errors, etc.

 -equinox.ds.debug: This flag will print debug messages regarding the service registration

mechanism. For more details, see Section 3.1.2.

 -equinox.ds.print: This flag will print additional information regarding the service

registration mechanism. For more details, see Section 3.1.2.

Please note that the above flags are optional. They are not a prerequisite for creating extensions

for EASy-Producer but may help searching and correcting errors.

3.1. Implementing a New Instantiator
An instantiator is an external and maybe third-party tool that processes product line artefacts in

its specific way. For example, the Velocity instantiator, which is shipped as a default instantiator

with EASy-Producer, resolves Velocity-specific tags within Java code in accordance to a specific

configuration5. This resolution capability allows deriving individual product variants based on the

configuration values and the corresponding manipulation of Java code. However, the default

instantiators of EASy-Producer may be insufficient in some situations. Further, in some situations

it is the better choice to realize a proper integration, e.g., if a legacy executable is used for

4 For more information visit: http://eclipse.org/equinox/
5 Details on the Velocity instantiator can be found in the EASy-Producer user guide (cf. Section 2.4).

EASy-Producer Developers Guide

Page 11

instantiation (this may be called directly from VIL) and the modified artefacts shall be passed back

to VIL (this is not generically supported). Thus, we provide a simple extension mechanism for

integrating custom instantiators with EASy-Producer.

In the first part of this section, we will introduce the basic instantiation concept of EASy-Producer

to form a common understanding of how an instantiator works. In the second part, we will

describe how to set-up a new plug-in project in Eclipse for implementing a custom instantiator.

This also includes the specific configurations that have to be done to utilize the automated search

and integration mechanism provided by Eclipse Dynamis Services. The third part will discuss the

methods that are required when implementing a new instantiator. The focus of this part will be

on how, when and why EASy-Producer invokes specific methods of an instantiator. In the fourth

part, we will finally show how to integrate a new instantiator.

3.1.1. Instantiation Concept in EASy-Producer

In this section, we will introduce the basic instantiation concept in EASy-Producer in order to

describe how the instantiators work. In the first part, we will have a black-box view on a generic

instantiator for identifying the required input (prerequisites) for an instantiator. Please note that

the generic instantiator is not related to any specific variability implementation technique (VIT).

Thus, we can only give a very simple view on the instantiators in general. In the second part, we

will relate the identified prerequisites in terms of giving a white-box view on the generic

instantiator. However, the actual logic that defines how to process artefacts depends on the used

VIT. Thus, this view is again simplified.

The concept of instantiators are closely related to the Variability Implementation Language (VIL)

for specifying the individual build tasks of an instantiation process. From the perspective of VIL,

instantiators are reusable, black-box components that may be called as part of a specific rule in an

VIL build script or as part of an VIL template. Please note that we will only discuss those parts of

VIL in this guide that are relevant to the actual implementation of an instantiators (and new

artefact types in Section 3.2). For further details about the language concepts, the available types,

and their application, please considere the VIL language specification (cf. Section 2.4).

An instantiator in EASy-Producer in general takes a set of possibly different input and produces a

set of output. Typically, the input consists of a configuration based on an IVML variability model,

generic artefacts (i.e. the artefacts of a software product line including variation points, etc.), and

different variants that can be applied to the variation points of the generic artefacts. Please note

that the presents as well as the location of generic artefacts, variation points and variants

depends on the used VIT (we will detail this below). Based on this input, the instantiator produces

an instantiator- or VIT-specific output, typically, a set of product-specific artefacts with resolved

variability as illustrated by Figure 3.

Below, we will describe the required i

 IVML Configuration: The IVML configuration is b

model using the IVML modeling language

3). A configuration includes all variable

constraints defined in the model. The validity of

checked before the instantiation process.

an invalid configuration, which will yield corrupted

instantiation, only configured and frozen variab

 Generic Artefacts: The

points (indicated by gray shapes in

as colored shapes in Figure

variation points (and the related variants) depends on the used

preprocessing as a VIT, the variation points might be indicated by #if

generic artefacts. In some situations an instantiator

scratch, which does not require any generic artefacts as

 Variants: The different variants that can be applied to a v

artefact may be implemented i

depends on the used VIT. In the example of preprocessing, the different variants will be

part of the generic arte

Figure 3: Black

EASy-Producer Developers Guide

Page 12

Below, we will describe the required input (prerequisites) of an instantiator in detail

The IVML configuration is based on the previously defined variability

model using the IVML modeling language (explicit prerequisite not mentioned in

. A configuration includes all variable-value pairs, which are valid with respect to the

constraints defined in the model. The validity of such a configuration is

the instantiation process. This prevents from calling the instantiator with

invalid configuration, which will yield corrupted product-specific

instantiation, only configured and frozen variables can be considered.

 generic artefacts, i.e. of a software product line, include variation

gray shapes in Figure 3) to which one or multiple variants (indicated

Figure 3) can be bound. However, the way of specifying such

variation points (and the related variants) depends on the used VIT. For example, using

preprocessing as a VIT, the variation points might be indicated by #if

In some situations an instantiator may also generate artefacts from

scratch, which does not require any generic artefacts as an input to the instantiator

The different variants that can be applied to a variation point of a generic

fact may be implemented independent from the generic artefacts. However, this also

depends on the used VIT. In the example of preprocessing, the different variants will be

rt of the generic artefacts. The variants not selected as part of the product will then be

: Black-box view of a generic instantiator (simplified)

of an instantiator in detail:

ased on the previously defined variability

(explicit prerequisite not mentioned in Figure

value pairs, which are valid with respect to the

such a configuration is automatically

This prevents from calling the instantiator with

specific artefacts. For

s, i.e. of a software product line, include variation

) to which one or multiple variants (indicated

he way of specifying such

. For example, using

preprocessing as a VIT, the variation points might be indicated by #if-statements in the

may also generate artefacts from

to the instantiator.

ariation point of a generic

facts. However, this also

depends on the used VIT. In the example of preprocessing, the different variants will be

variants not selected as part of the product will then be

deleted by the preprocessor. In

implemented as independent aspects, which can be woven into the generic art

they are selected as part of the product.

The relation between IVML configuration, generic

The decision variables and their values will be passed in as a VIL configuration insta

exactly defines the scope, while the

(we will discuss this in detail in Section

the implemented instantiator logic.

pseudo-code:

 Variant A: In variant A the instantiator will process all files given by the

in terms of searching for variation points in each file (this

Figure 4; some VITs may also introduce further concepts besides variation points

be searched and processed by an instantiator

point (or VIT-statement) is

domain engineer who

information regarding the actual logic.

 Variant B: In variant B the instantiator will process all decision variables

configuration, i.e. in terms of searching for a specific variable

to do if a certain variable

relation between the specifi

further information regarding the actual logic.

Figure 4: White

EASy-Producer Developers Guide

Page 13

cessor. In case of using aspect-orientation as VIT, the variants are

implemented as independent aspects, which can be woven into the generic art

they are selected as part of the product.

between IVML configuration, generic artefacts, and variants is illustrated in

The decision variables and their values will be passed in as a VIL configuration insta

exactly defines the scope, while the files will be passed in as a VIL container of type FileArtifact

(we will discuss this in detail in Section 3.1.3). The way of processing this information depends on

the implemented instantiator logic. Figure 4 sketches two possible variants of such

In variant A the instantiator will process all files given by the

in terms of searching for variation points in each file (this is described as VIT

some VITs may also introduce further concepts besides variation points

be searched and processed by an instantiator). However, what to do if a certain variation

statement) is found heavily depends on the used VIT and the intention of the

who defines these variation points. Thus, we cannot give further

information regarding the actual logic.

In variant B the instantiator will process all decision variables

, i.e. in terms of searching for a specific variable-value pair

to do if a certain variable-value pair is found heavily depends on the used VIT and the

relation between the specific decision variable and the artefacts. Thus, we cannot give

further information regarding the actual logic.

White-box view of a generic instantiator (simplified)

as VIT, the variants are

implemented as independent aspects, which can be woven into the generic artefacts if

s is illustrated in Figure 4.

The decision variables and their values will be passed in as a VIL configuration instance, which

files will be passed in as a VIL container of type FileArtifact

The way of processing this information depends on

sketches two possible variants of such logic in

In variant A the instantiator will process all files given by the VIL contanier, i.e.

is described as VIT-statement in

some VITs may also introduce further concepts besides variation points that can

However, what to do if a certain variation

heavily depends on the used VIT and the intention of the

these variation points. Thus, we cannot give further

In variant B the instantiator will process all decision variables given by the VIL

value pair. However, what

heavily depends on the used VIT and the

facts. Thus, we cannot give

EASy-Producer Developers Guide

Page 14

An instantiator may also provide further functionality, i.e. the generation of files based on the

variable-value pairs (this may also exclude the selection of files to instantiate as the instantiation

process will generate completely new files), the combination of other (non-source) artefacts like

documentation, etc. However, this depends on the used VIT and the specific purpose an

instantiator is designed for.

3.1.2. Eclipse Plug-in Project Creation and Configuration for New Instantiators

The first step towards a new instantiator is to create new Eclipse plug-in project: File � New �

Project… . In the emerging wizard, open the category Plug-in Development, select Plug-in Project,

and click the Next button. In the New Plug-in Project wizard, define a name for your project. We

will use the following name throughout this section: EASyExampleInstantiator. Further, define the

target platform with which the plug-in should run. In this case, the instantiator plug-in will run

with a standard OSGi framework. Figure 5 shows how the first configuration page for the new

plug-in project must look like.

Click on the Next button and define the properties of your plug-in. We will use the following

values for the required properties:

 ID: de.uni_hildesheim.sse.easy.instantiator.exampleInstantiator

 Version: 0.0.1

 Name: EASyExampleInstantiator

 Provider: University of Hildesheim – SSE

Figure 5: Configuration of a new Eclipse plug-in project for a new Instantiator

EASy-Producer Developers Guide

Page 15

Leave all other properties and options as-is and finish the configuration by clicking the Finish

button of the New Plug-in Project wizard. Please note that some of the following steps described

in this section can also be done by using the wizard. However, we decided to do these steps

manually to provide a more detailed explanation.

The plug-in manifest file will open by default. In the Overview tab check the Activate this plug-in

when one of its classes is loaded checkbox and the This plug-in is a singleton checkbox. The first

check will guarantee that the plug-in is activated when EASy-Producer loads one of its classes,

while the second check is related to one of the concepts of EASy-Producer: each instantiator

exists only once (only one instance) and can be accessed by any product line project. Thus, this

check guarantees that the new instantiator will follow the concepts of EASy-Producer.

The next step is to define the dependencies of the new plug-in. Thus, open the plug-in manifest

and select the Dependencies tab. On the left side click the Add… button in order to specify the

following plug-ins:

 org.eclipse.equinox.ds: This plug-in simplifies the task of authoring OSGi services by

performing the work of registering the service and handling service dependencies6.

 org.eclipse.core.runtime: This plug-in provides support for the Eclipse runtime platform,

core utility methods, and the extension registry7. The latter is important for the EASy-

Producer extension mechanism.

 de.uni-hildesheim.sse.easy.instantiatorCore: This plug-in provides the core capabilities of

the EASy-Producer instantiator concept. We will use parts of this plug-in in Section 3.1.3.

By default, Eclipse adds the package org.osgi.framework as Imported Packages because of the

selected target platform in the New Plug-in Project wizard. However, this package is not required

for the integration with EASy-Producer and, thus, can be removed. Select the package on the

right side of the Dependencies tab and click the Remove button. Then, click the Add… button and

select org.osgi.service.component as Imported Packages. This package provides support for service

components and their interaction with the context in which they are executed8. The Dependencies

tab should now look like the one illustrated by Figure 6.

6 For more information visit: http://eclipse.org/equinox/
7 For more information visit: Eclipse API – org.eclipse.core.runtime
8 For more information visit: OSGi API – org.osgi.service.component

EASy-Producer Developers Guide

Page 16

In order to register the new plug-in to EASy-Producer, the service component has to be declared.

Thus, switch to the MANIFEST.MF tab in the plug-in manifest and add the following Service-

Component declaration:

Service-Component: OSGI-INF/instantiator.xml

This Service-Component declaration specifies the location where to find the information about

the service component, which shall be integrated into EASy-Producer. The declared XML file will

be defined in the next step. Figure 7 shows how the manifest file must look like.

The definition of the service component requires the creation of a new folder within the plug-in

project. Right click on the plug-in project and select New � Folder. The name of the folder has to

be OSGI-INF. Then, create a new XML file within this folder. Right click on the folder and select

New � Other… . In the emerging wizard, open the category XML9, select XML File, and click the

Next button. Define the name of the file in accordance to the file declared in the manifest

illustrated in Figure 7: instantiator.xml. Clicking the Finish button will open the XML editor. Switch

to the source tab and edit the file as follows:

<?xml version="1.0" encoding="UTF-8"?>

9 If the category XML does not exist, install XML support using Help � Install New Software or open the
category General, select File, and define the name as well as the file-type manually.

Figure 7: Declaration of the service-component for the new instantiator

Figure 6: Definition of the required plug-ins for the new instantiator

EASy-Producer Developers Guide

Page 17

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"

immediate="true"
name="EASy Example Instantiator">

<implementation class="easyexampleinstantiator.ExampleEngine"/>

<service>

<provide interface="de.uni_hildesheim.sse.easy_producer.
instantiator.InstantiatorEngine"/>

</service>
</scr:component>

Figure 8 shows the final XML file. Please note that we used the names and package-structure of

our example in Figure 8. Thus, with respect to different implementations the name of the service

component in line 4 as well as the package and the class name of the implementation class

element in line 6 (the class, which will implement the instantiator) have to be adapted. Please

ignore the warning in line 6 as the class currently does not exist. This will be part of Section 3.1.3.

The previously defined XML file must be included in the binary build. Thus, open the manifest file

again and switch to the Build tab. In the left lower part of this tab select the OSGI-INF folder to be

included in the binary build.

The last step is the inclusion of external, third-party libraries – the actual instantiator. Please note

that this step is only required if the main implementation of the instantiator or other required

functionalities are implemented in another plug-in or library. In such a case, build the plug-in or

the library first10. Then, right click on the current instantiator plug-in project, select New and

Folder. The name of the new folder must be lib. Include all libraries in this folder that are required

by the new instantiator. The folder and the required libraries have to be included in the Classpath

of the new plug-in. Thus, open the plug-in manifest and switch to the Runtime tab. Add the

libraries to the Classpath by clicking on the Add… button on the right side of the Runtime tab.

Select all required libraries of the lib folder and click the Ok button. Switch to the Build tab of the

plug-in manifest and select the lib folder to be part of the Binary Build in the left lower part of this

tab. Figure 9 and Figure 10 show the result in the context of our example. Figure 9 shows the

included library de.uni_hildesheim.sse_0.0.1.jar, which provides the main functionality of our

prototypical instantiator and, thus, has to be available at runtime. Figure 10 illustrates the build

configuration in which the library (highlighted) is selected as part of the Binary Build.

10 If you do not know how to build a plug-in, please consider Section 3.1.3.

Figure 8: Definition of the service-component for the new instantiator

EASy-Producer Developers Guide

Page 18

Finally, the plug-in project is set up, configured and ready to use. In the next section, we will

further develop this plug-in by implementing instantiator-specific functionality based on the

results of this section.

3.1.3. Instantiator Implementation

In the previous section, we set up the Eclipse plug-in project for implementing a new instantiator

for EASy-Producer. In this section, we will describe how to implement the (basic) functionalities of

an instantiator. However, as each instantiator provides its individual capabilities and is used for

different purposes, this description will only include the basic functionalities that are common to

each instantiator.

Figure 10: Binary Build selection of external, required libraries

Figure 9: Classpath specification of external, required libraries

EASy-Producer Developers Guide

Page 19

The first step is to create a new Java class file. Right click on the package that was defined as the

implementation class package in Section 3.1.2 and select New � Class. In the emerging Java Class

wizard, define the name of the new class in accordance to the name of the implementation class

(cf. Section 3.1.2). In our example, we use the name ExampleEngine. Leave all other options as-is.

Each instantiator must implement the IVilType interface, must be annotated with the annotation

Instantiator, and must implement at least one static method, which typically has the same name

as the instantiator (because the name of the method will as well identify the instantiator call in

VIL). This enables the integration of the new instantiator as part of the VIL language. We will

describe this intergration in detail in Section 3.1.4, while details about VIL types in gereral, the

annotation, and, in particular, the IVilType interface can be obtained in the VIL language

specification (cf. Section 2.4).

Thus, the next step is to edit the new class file as follows (please note that we use the packages

and class names of our example):

package easyexampleinstantiator;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel

 .FileArtifact;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes

 .ArtifactException;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes

 .Collection;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes

 .IVilType;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes

 .Instantiator;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.Set;
import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes

 .configuration.Configuration;

@Instantiator("exampleEngine")

public class ExampleEngine implements IVilType {

 protected void activate(ComponentContext context) {

 try {

 TypeRegistry.registerType(ExampleEngine.class);

 } catch (VilException e) {

 e.printStackTrace();

 }

 }

 protected void deactivate(ComponentContext context) {

 }

 public static Set<FileArtifact> exampleEngine(Collection<FileArtifact>

 templates, Configuration config) throws ArtifactException {

 // Implementation of the actual instantiation

 }

 // ...

}

We will now discuss each of these methods in detail:

EASy-Producer Developers Guide

Page 20

 activate: This method is used to activate the instantiator plug-in. In this case, we will

register the new type in the type registry. This will include the type in the artefact model,

ready for use in the VIL build language or the template language.

 deactivate: This method is used to deactivate the instantiator plug-in. However, in this

situations we do not need to unregister the type again as this would yield errors in the VIL

build script or template as the type would be unknown.

The actual implementation above is rather simple. The single static method represents the entry-

point of the instantiator when it is called as part of a VIL build execution (mandatory). Here, the

name of the method exmapleEngine will be used in the VIL language to call this instantiator,

including the defined parameters. In our example, this method requires the follwing parameters:

 templates: This collection includes a set of FileArtifacts, which represent (real) generic

artefacts, for example, of a specific software product line. The Collection type as well as

the FileArtifact type are defined in the Artifact Model of VIL (see VIL Language

Specification for details on the VIL artefact model). This set of artefacts will be processed

by the instantor depending on the actual logic.

 config: The current configuration based on the IVML variability model of the respective

product line. The Configuration type is again part of the VIL artefact model. The

configuration provides access to the current variables and their values to determine which

artefacts have to be instantiated in which way. However, this is defined in the actual

implementation of the instantiator.

Please note that the exmaple above only provides a prototypical implementation of an

instantiator. The types used in the actual implementation depend on the logic of the instantiator

and its purpose. The available types in turn depend on the VIL type system.

The last step is to build the plug-in. Open the plug-in manifest file and click on the Export

deployable plug-ins and fragments button in the upper right corner. In the emerging wizard select

the current plug-in project, specify the desired destination13, and click on the Finish button.

Finally, the plug-in and, thus, the instantiator is implemented, build, and ready for use. In the next

section, we will describe how to integrate a new instantiator in EASy-Producer. We will also have

a quick look on how to use it. However, for detailed information on how to use an instantiator,

please consider the EASy-Producer User Guide.

3.1.4. Instantiator Integration

In the previous section, we implemented the (basic) functionalities of a new instantiator. Further,

we build a deployable plug-in, which we will use in this section for integrating the new

instantiator within an EASy-Producer installation.

The first and only step is to copy the previously build instantiator plug-in into the dropins folder of

the Eclipse application in which EASy-Producer installed. Start the Eclipse application and create a

new product line project: File � New � Other… � EASy-Producer � New EASy-Producer Project.

13 The destination is up to the developer. However, we recommend using a location, which is easy to find as
we will need the location for integrating the new instantiator in Section 3.1.4.

The name of the new project is up to the developer.

workspace, open, for exmaple, the

EASy-folder. Calling the new instantiator as part of a build task

name of the method defined in Section

shows the call of our example instantiator.

3.2. Implementing a New
The Variability Implementation Language (VIL) is a textual language for the flexible specification

of the instantiation process of a software product line

variabilities. Actually, VIL is not a single language. It consists of four main parts, namely the

artefact model, the VIL template language, blackbox instantiators, and the VIL build language. In

this section, we will focus on the artefact model and the extension of this model by new

types. In the first part, we will briefly introduce the VIL artefact model and discuss the basic

concept regarding the extension capabilities. In the second part, we will de

the model by an example artefact in a step

3.2.1. The VIL Artefact Model

The artefact model defines the individual capabilities of various types of assets used in variability

instantiation, such as Java source

runtime variabilities), or elements of the file system such as files or folders. Production strategies

are operations on the types of the input and output artefacts using the capabilities of the ass

for specifying the instantiation.

language and the VIL template language to enable the instantiation of variable artefacts of the

respective type. More details on the artefact model and V

language specification (cf. Section

The classes in the artefact model

these classes represent real artefact

editors. Currently, there are five fundamental types:

 Path expressions for denoting file system and language

 Simple artefacts, which cannot be decomposed. Typically, generic folders and simple

generic components shall be represented as simple

as default representation through the

specified by a more specific

Figure

EASy-Producer Developers Guide

Page 21

The name of the new project is up to the developer. If a product line project is avai

aple, the VIL Build Language Editor by double clicking the VIL file in the

. Calling the new instantiator as part of a build task can be done by simple typing the

name of the method defined in Section 3.1.3 and passing the required parameters.

shows the call of our example instantiator.

Implementing a New VIL Artefact Type
The Variability Implementation Language (VIL) is a textual language for the flexible specification

of the instantiation process of a software product line or any other software project that includes

Actually, VIL is not a single language. It consists of four main parts, namely the

artefact model, the VIL template language, blackbox instantiators, and the VIL build language. In

e will focus on the artefact model and the extension of this model by new

In the first part, we will briefly introduce the VIL artefact model and discuss the basic

concept regarding the extension capabilities. In the second part, we will describe the extension of

the model by an example artefact in a step-wise manner.

The VIL Artefact Model in EASy-Producer

The artefact model defines the individual capabilities of various types of assets used in variability

instantiation, such as Java source code, Java byte code, XML files but also components (for

runtime variabilities), or elements of the file system such as files or folders. Production strategies

are operations on the types of the input and output artefacts using the capabilities of the ass

for specifying the instantiation. Thus, the available artefact types will be used in the VIL build

language and the VIL template language to enable the instantiation of variable artefacts of the

respective type. More details on the artefact model and VIL in general can be found in the VIL

language specification (cf. Section 2.4).

the artefact model can be understood as meta-classes of artefact

artefacts. Artefacts are VIL types in order to be available in the VIL

editors. Currently, there are five fundamental types:

for denoting file system and language-specific paths.

, which cannot be decomposed. Typically, generic folders and simple

generic components shall be represented as simple artefacts. Some of those

as default representation through the ArtefactFactory, i.e., any real artefact

ied by a more specific artefact class is represented by those artefact

Figure 12: Using the new instantiator in a VIL build script.

line project is available in the

by double clicking the VIL file in the

can be done by simple typing the

and passing the required parameters. Figure 12

The Variability Implementation Language (VIL) is a textual language for the flexible specification

or any other software project that includes

Actually, VIL is not a single language. It consists of four main parts, namely the

artefact model, the VIL template language, blackbox instantiators, and the VIL build language. In

e will focus on the artefact model and the extension of this model by new artefact

In the first part, we will briefly introduce the VIL artefact model and discuss the basic

scribe the extension of

The artefact model defines the individual capabilities of various types of assets used in variability

code, Java byte code, XML files but also components (for

runtime variabilities), or elements of the file system such as files or folders. Production strategies

are operations on the types of the input and output artefacts using the capabilities of the assets

Thus, the available artefact types will be used in the VIL build

language and the VIL template language to enable the instantiation of variable artefacts of the

IL in general can be found in the VIL

artefacts. Instances of

s are VIL types in order to be available in the VIL

specific paths.

, which cannot be decomposed. Typically, generic folders and simple

s. Some of those artefacts act

artefact which is not

artefact types.

EASy-Producer Developers Guide

Page 22

 Fragment artefacts, representing decomposed artefact fragments such as a Java method

or a SQL statement.

 Composite artefacts, representing decomposable artefacts consisting of fragments. In

case of resolution conflicts, composite artefacts have more priority than simple artefacts,

e.g., if there is a simple artefact and a composite artefact representation of Java source

classes, the composite will be taken. However, if there are resolution conflicts in the same

type of artefacts, e.g., multiple composite representations, then the first one loaded by

Java will take precedence. In order to implement a decomposable artefact, also an

instance of the IArtifactCreator must be implemented. This describes creator instances

which know how to translate real world objects into artifact instances. We will illsutrate

the usage of this interface in the implementation of our exmaple in Section .3.2.3

 The types in de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes are most

basic and enable building a bridge to the variability model with own VIL-specific

operations.

Instances of all artefact types can be obtained from the ArtefactFactory. This is in particular true

for instances of the ArtefactModel which provides an environment for instantiating artefacts, i.e.,

it manages created artefacts. While the ArtefactFactory may be used standalone, the correct

internal listener registration is done by ArtefactModel so that model and artefacts are informed

about changes and can be kept up to date, i.e., artefact instances shall be created using methods

of ArtefactModel.

Subclassing these artefact types (and registering them with the artefact factory through the

Eclipse DS mechanism) transparently leads to more specific artefact types with more specific

operations. Please note that even the simple names of Vil types and artefacts shall be unique

(unless they shall override existing implementations) due to the transparent embedding into the

VIL languages. Types must be registered in TypeRegistry.

All operations marked by the annotation Invisible will not be available through the VIL languages.

However, the (semantics of the) Invisible annotation may be inherited if required. By convention,

collections are returned in terms of type-parameterized sets or sequences. However, an artefact

method returning a collection must be annotated by OperationMeta.returnGenerics() in order to

defined the actual types used in the collection (this is not available via Java mechanisms). Further,

operations and classes may be marked by the following annotations:

 Conversion to indicate type conversion operations considered for automatic type

conversion when calling methods from a VIL expression. These methods must be static,

take one parameter of the source type and return the target type.

 OperationMeta for renaming operations (for operator implementations), determining

their operator type or, as mentioned above, making the type parameters of a generic

return type explicit. Basically, all three information types are optional.

 ClassMeta for renaming the annotated class, i.e., hiding the Java implementation name.

Collections may define generic iterator operations such as checking a condition or applying a

transformation expression to each element. Therefore, a non-static operation on a collection

receiving (at the moment exactly) one ExpressionEvaluator instance as parameter (possibly more

EASy-Producer Developers Guide

Page 23

parameters) will be considered by VIL as an iterator operation. The ExpressionEvaluator will carry

an iterator variable of the first parameter (element type) of the collection as well as an expression

parameterized over that variable (i.e., it uses the [undbound] variable). The job of the respective

collection operation is to apply the expression to each element in the collection, i.e., to bind the

variable to each collection element (via the runtime variable of the temporarily attached

EvaluationVisitor in the ExpressionEvaluator), to call the respective evaluation operation of the

ExpressionEvaluator and to handle the returned evaluation result appropriately.

Artefact or instantiator operations may cause VIL rules and templates to fail if they return a non-

true result, i.e., an empty collection or null. However, in order to state explicitly that an operation

cannot be executed, an operation shall throw an ArtefactException.

Basically, artefact or instantiator operations are identified by their name, the number, sequence

and type of their parameter. However, some operations such as template processors may require

an unlimited number of not previously defined parameters. In this case, VIL allows to pass in

named parameters. In the respective artefact or instantiator operations, named parameters are

represented by a Map as last parameter which receives the names and the actual values of given

named VIL parameters. The interpretation of named parameters belongs to the respective

method.

3.2.2. Eclipse Plug-in Project Creation and Configuration for New Artefacts

The set up of an Eclipse plug-in project for a new VIL artefact type is quite similar to the set up for

a new instantiation described in Section 3.1.2. Below, we will decribe the only changes with

respect to the instantiator set up:

 Project name: We will use EASyExampleArtifact as the name for the project throughout

this sections.

 OSGI information: The XML-file for the definition of the service component will change in

terms of the name (artifact.xml) and the content as follows:

<?xml version="1.0" encoding="UTF-8"?>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true"
 name="EASy Example Artifact">

 <implementation class="easyexampleartifact.ExampleArtifact"/>

 <service>
 <provide interface="de.uni_hildesheim.sse.easy_producer.
 instantiator.model.vilTypes.IVilType"/>
 </service>
</scr:component>

3.2.3. Artefact Implementation

The first step is to create a new Java class file. In our example, we use the name ExampleArtifact.

Each new artefact has to implement the IVilType interface and may extend one of the base VIL

EASy-Producer Developers Guide

Page 24

types introduced in Section 3.2.1. We will extend the FileArtifact in this exmaple. Thus, the

content14 of the new class file looks like this:

package easyexampleartifact;

import java.io.File;

import org.osgi.service.component.ComponentContext;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.ArtifactCreator;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.ArtifactModel;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.FileArtifact;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.FragmentArtifact;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.IArtifactVisitor;
import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.representation.

 Binary;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.representation.Text;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.ArtifactException;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.IVilType;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.Set;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.TypeRegistry;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.VilException;

@ArtifactCreator(ExampleFileArtifactCreator.class)

public class ExampleArtifact extends FileArtifact implements IVilType {

 public ExampleArtifact(File file, ArtifactModel model) {

 super(file, model);

 }

 protected void activate(ComponentContext context) {

 try {

 TypeRegistry.registerType(ExampleArtifact.class);

 } catch (VilException e) {

 e.printStackTrace();

 }

 }

 protected void deactivate(ComponentContext context) {

 }

 @Override

 public void delete() throws ArtifactException {

 // Here goes the implementation

 }

 @Override

 public String getName() throws ArtifactException {

 // Here goes the implementation

 }

 @Override

 public void rename(String name) throws ArtifactException {

 // Here goes the implementation

 }

14 Please note that we cannot discuss all methods in detail due to the complexity of the artefact model and
the available types and methods.

EASy-Producer Developers Guide

Page 25

 @Override

 public void accept(IArtifactVisitor visitor) {

 // Here goes the implementation

 }

 @Override

 public boolean isUptodate(long timestamp) {

 // Here goes the implementation

 }

 @Override

 public boolean exists() {

 // Here goes the implementation

 }

 @Override

 public void artifactChanged() throws ArtifactException {

 // Here goes the implementation

 }

 @Override

 public Set<? extends FragmentArtifact> selectAll() {

 // Here goes the implementation

 }

 @Override

 protected Text createText() throws ArtifactException {

 // Here goes the implementation

 }

 @Override

 protected Binary createBinary() throws ArtifactException {

 // Here goes the implementation

 }

 @Override

 public void store() throws ArtifactException {

 // Here goes the implementation

 }

}

We will now discuss each of these methods in detail:

 Constructor: The constructor of this class requires a (real) artefact in terms of a file, which

will be represented by this artefact type, and the corresponding artefact model instance

this artefact belongs to. These parameters are passed to the super-class, the FileArtifact.

 activate: This method is used to activate the instantiator plug-in. In this case, we will

register the new type in the type registry. This will include the type in the artefact model,

ready for use in the VIL build language or the template language.

 deactivate: This method is used to deactivate the instantiator plug-in. However, in this

situations we do not need to unregister the type again as this would yield errors in the VIL

build script or template as the type would be unknown.

 delete: This method deletes the current instance of this artefact Including its underlying

real-world object, e.g., this operation may delete an entire file.

 getName: This method returns the name of the current instance of this artefact.

EASy-Producer Developers Guide

Page 26

 rename: This method renames the current instance of this artefact and its underlying real-

world object.

 accept: This method visits the current instance of this artefact (and dependent on the

visitor also contained artifacts and fragments) using the given visitor.

 isUptodate: This method returns whether the current instance of this artefact is up-to-

date (with respect to the given timestamp) and whether it shall be considered for

recreation in preconditions of VIL build language rules.

 exists: This method returns whether the current instance of this artefact exists. Also this

method is considered by the VIL build language.

 artifactChanged: This method is called when the current instance of this artefact was

changed, e.g., to trigger a reanalysis of substructures. This may be caused by one of the

alternative basic representations such as text or binary (see below).

 selectAll: This method returns all artefacts of the current instance of this composite

artefact is composed of.

 createText: This method actually creates a text representation of the current instance of

this artefact. The binary representation enables to modify the entire artifact from a

textual point of view, i.e., using text manipulation operations. Please note that the

getText-method of the super-class CompositeArtifact calls this method and registers the

listeners appropriately.

 createBinary: This method actually creates a binary representation of the current instance

of this artefact. The binary representation enables to modify the entire artifact from a

binary point of view, i.e., in terms of individual bytes. Please note that the getBinary()-

method of the super-class CompositeArtifact calls this method and registers the listeners

appropriately.

 store: This method stores changes to the artefact. Typically, this is done by saving the

changes of the file contents to the real-world file artefact.

The new artefact type is derived from the FileArtifact type of the VIL artefact model, which is

derived from the CompositeArtifact introduced in Section 3.2.1. This type of artefact also requires

the implementation of an instance of the IArtifactCreator interface to relate real-world artefacts

to the new VIL type (indicated by the annotation of this class-implementation above).

Implementations of this artefact must fulfill the following contract:

 The method handlesArtifact(Class, Object) of the ArtifactCreator is called to figure out

whether a creator (Class) is able to handle a certain artifact (Object) under given class-

based restrictions. Typically, more specific creators are asked later than more generic

ones, but more specific creators (according to inheritance relationships) are considered

first for creation. An implementation which answers <code>true</code> must be able to

create the queried artifact.

 The method createArtifactInstance(Object) of the ArtifactCreator actually creates an

instance for the previously queried object. However, no information shall be stored nor

there is a guarantee that this method will be called (dependent on the other registered

creators). As stated above, if handlesArtifact(Class, Object) answers with true,

createArtifactInstance(Object) must be able to perform the creation for the given object.

EASy-Producer Developers Guide

Page 27

In our exmaple, we will define a new class for the implementation of an artefact creator, named

ExampleFileArtifactCreator. The implementation of this class is given below:

package easyexampleartifact;

import java.io.File;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.ArtifactModel;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.

 DefaultFileArtifactCreator;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.FileArtifact;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.artifactModel.IArtifact;

import de.uni_hildesheim.sse.easy_producer.instantiator.model.vilTypes.ArtifactException;

public class ExampleFileArtifactCreator extends DefaultFileArtifactCreator {

 @Override

 protected boolean handlesFileImpl(File file) {

 return checkSuffix(file, ".example");

 }

 @Override

 public FileArtifact createArtifactInstance(Object real, ArtifactModel model)

 throws ArtifactException {

 return new ExampleArtifact((File) real, model);

 }

 @Override

 public Class<? extends IArtifact> getArtifactClass() {

 return ExampleArtifact.class;

 }

}

We will now discuss each of these methods in detail:

 handlesFileImpl: This method may specify additional properties of a file that must be

fullfilled in order to define the file as representable by this artefact type (the

ExampleArtifact in this case). It is already guaranteed that the passed file is a file and not

a directory. In our exmaple, we will check whether the suffix of the given file matches

“.exmaple”.

 createArtifactInstance: This method creates a new instance of the artefact type based on

the passed (real) artefact.

 getArtifactClass: This method return the class that implements the artefact.

The last step is to build the plug-in. Open the plug-in manifest file and click on the Export

deployable plug-ins and fragments button in the upper right corner. In the emerging wizard select

the current plug-in project, specify the desired destination15, and click on the Finish button.

Finally, the plug-in and, thus, the new artefact is implemented, build, and ready for use. The

integration is the same as in the instantiator case described in Section 3.1.4 (copy the final plug-in

into the dropins-folder). The next time Eclipse will be started the new artefct type can be used in

the VIL build language and in the VIL template language.

15 The destination is up to the developer. However, we recommend using a location, which is easy to find as
we will need the location for integrating the new instantiator in Section 3.1.4.

EASy-Producer Developers Guide

Page 28

3.3. Implementing a New Reasoner
The IVML language provides highly expressive modelling elements and concepts for the definition

of variability models. Thus, checking whether a specific (product) configuration is valid is a

challenging task. In EASy-Producer, we use so-called reasoners to perform the task of model and

configuration checking and validation. A reasoner is typically a third-party tool, which is designed

to solve logical and combinatorial problems, checking specific value combinations of related

modelling elements, etc. Similar to the instantiators in EASy-Producer, we provide a simple

extension mechanism for integrating custom reasoners with the tool.

In the following sections, we will describe the set-up a new plug-in project in Eclipse for

implementing a custom reasoner. This also includes the specific configurations that have to be

done to utilize the automated search and integration mechanism provided by EASy-Producer.

Further, we will discuss the methods that are required when implementing a new reasoner.

3.3.1. Eclipse Plug-in Project Creation and Configuration for New Reasoners

The first steps of the creation of a new Eclipse plug-in for the implementation of a new reasoner

are quite similar to the creation of a new instantiator plug-in (cf. Section 3.1.2). However, the first

change is in the name of the new project. We will use EASyExampleReasoner throughout this

section as the name and define, again, the standard OSGI framework as the target platform.

Further changes occur in the definition of the plug-in properties. We will use the following values:

 ID: de.uni_hildesheim.sse.easy.reasoner.exampleReasoner

 Version: 0.0.1

 Name: EASyExampleReasoner

 Provider: University of Hildesheim – SSE

The plug-in manifest file will open by default after clicking the Finish button. In the Overview tab

check the Activate this plug-in when one of its classes is loaded checkbox and the This plug-in is a

singleton checkbox.

The next step is to define the dependencies of the new plug-in. Thus, open the plug-in manifest

and select the Dependencies tab. On the left side click the Add… button in order to specify the

following plug-ins:

 org.eclipse.equinox.ds (described in Section 3.1.2)

 org.eclipse.core.runtime (described in Section 3.1.2)

 ReasonerCore: This plug-in provides the core capabilities of the EASy-Producer reasoning

concept. We will use parts of this plug-in in Section 3.3.2.

 de.uni_hildesheim.sse.varModel: This plug-in provides access to the underlying variability

object model of EASy-Producer. This provides, for exmaple, the access to the current

configuration of the variability model, the included decision variables and constraints, etc.

We will use parts of this plug-in in Section 3.3.2.

By default, Eclipse adds the package org.osgi.framework as Imported Packages because of the

selected target platform in the New Plug-in Project wizard. However, this package is not required

for the integration with EASy-Producer and, thus, can be removed. Select the package on the

EASy-Producer Developers Guide

Page 29

right side of the Dependencies tab and click the Remove button. Then, click the Add… button and

select org.osgi.service.component as Imported Packages. This package provides support for service

components and their interaction with the context in which they are executed.

In order to register the new plug-in to EASy-Producer, the service component has to be declared.

Thus, switch to the MANIFEST.MF tab in the plug-in manifest and add the following Service-

Component declaration:

Service-Component: OSGI-INF/reasoner.xml

The definition of the service component requires the creation of a new folder within the plug-in

project. Right click on the plug-in project and select New � Folder. The name of the folder has to

be OSGI-INF. Then, create a new XML file within this folder. Right click on the folder and select

New � Other… . In the emerging wizard, open the category XML16, select XML File, and click the

Next button. Define the name of the file in accordance to the file declared in the manifest:

reasoner.xml. Clicking the Finish button will open the XML editor. Switch to the source tab and

edit the file as follows:

<?xml version="1.0" encoding="UTF-8"?>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true"
 name="EASy Example Reasoner">

 <implementation class="easyexamplereasoner.ExampleReasoner"/>

 <service>
 <provide interface="de.uni_hildesheim.sse.reasoning.core.
 reasoner.IReasoner"/>
 </service>
</scr:component>

The previously defined XML file must be included in the binary build. Thus, open the manifest file

again and switch to the Build tab. In the left lower part of this tab select the OSGI-INF folder to be

included in the binary build.

In order to include external, third-party libraries, follow the last step decribed in Section 3.1.2.

Finally, the plug-in project is set up, configured and ready to use. In the next section, we will

further develop this plug-in by implementing the required classes and methods based on the

results of this section.

3.3.2. Reasoner Implementation

In the previous section, we set up the Eclipse plug-in project for implementing a new reasoner for

EASy-Producer. In this section, we will first describe the different classes that are required to

register the new reasoner in EASy-Producer and, second, describe how to implement the required

(basic) methods of a reasoner. However, as each reasoner provides its individual capabilities, this

description will only include the basic functionalities that are common to each reasoner.

16 If the category XML does not exist, install XML support using Help � Install New Software or open the
category General, select File, and define the name as well as the file-type manually.

EASy-Producer Developers Guide

Page 30

In contrast to the instantiator implementation, the implementation of a reasoner requires a two

Java classes. Below, we will describe each required class in detail. Please note that the names of

the classes are due to the name of this example.

 ExampleReasonerDescriptor.java: This class includes the following attributes of a reasoner:

the descriptive name, the version, the license, license restrictions, and a download source

(if this is a third-party reasoner). While the name is a mandatory attribute, all other

attributes are optional. In this exmaple, the reasoner descriptor looks like this:

package easyexamplereasoner;

import de.uni_hildesheim.sse.reasoning.core.reasoner.ReasonerDescriptor;

public class ExampleReasonerDescriptor extends ReasonerDescriptor {

 static final String NAME = "Example Reasoner";

 static final String VERSION = "0.1";

 private static final String LICENSE = "<Licences Agreement>";

 public ExampleReasonerDescriptor() {

 super(NAME, VERSION, LICENSE, null, null);

 }

 @Override

 public boolean isReadyForUse() {

 return true;

 }

}

 ExampleReasoner.java: This class provides the actual implementation of the reasoner. In

this exmaple, the reasoner implementation looks like this:

package easyexamplereasoner;

import java.net.URI;

import java.util.List;

import org.osgi.service.component.ComponentContext;

import de.uni_hildesheim.sse.model.progress.ProgressObserver;

import de.uni_hildesheim.sse.model.varModel.Constraint;

import de.uni_hildesheim.sse.model.varModel.Project;

import de.uni_hildesheim.sse.reasoning.core.frontend.ReasonerFrontend;

import de.uni_hildesheim.sse.reasoning.core.reasoner.EvaluationResult;

import de.uni_hildesheim.sse.reasoning.core.reasoner.IReasoner;

import de.uni_hildesheim.sse.reasoning.core.reasoner.IReasonerMessage;

import de.uni_hildesheim.sse.reasoning.core.reasoner.ReasonerConfiguration;

import de.uni_hildesheim.sse.reasoning.core.reasoner.ReasonerDescriptor;

import de.uni_hildesheim.sse.reasoning.core.reasoner.ReasoningResult;

public class ExampleReasoner implements IReasoner {

 private static final ReasonerDescriptor DESCRIPTOR = new

ExampleReasonerDescriptor();

EASy-Producer Developers Guide

Page 31

 protected void activate(ComponentContext context) {

 ReasonerFrontend.getInstance().getRegistry().register(this);

 }

 protected void deactivate(ComponentContext context) {

 ReasonerFrontend.getInstance().getRegistry().unregister(this);

 }

 @Override

 public ReasonerDescriptor getDescriptor() {

 return DESCRIPTOR;

 }

 @Override

 public ReasoningResult upgrade(URI url, ProgressObserver observer) {

 // Here goes the implementation

 }

 @Override

 public ReasoningResult isConsistent(Project project,

 ReasonerConfiguration reasonerConfiguration,

 ProgressObserver observer) {

 // Here goes the implementation

 }

 @Override

 public void notify(IReasonerMessage message) {

 // Here goes the implementation

 }

 @Override

 public ReasoningResult check(Project project,

 de.uni_hildesheim.sse.model.confModel.Configuration cfg,

 ReasonerConfiguration reasonerConfiguration,

 ProgressObserver observer) {

 // Here goes the implementation

 }

 @Override

 public ReasoningResult propagate(Project project,

 de.uni_hildesheim.sse.model.confModel.Configuration cfg,

 ReasonerConfiguration reasonerConfiguration,

 ProgressObserver observer) {

 // Here goes the implementation

 }

 @Override

 public EvaluationResult evaluate(Project project,

 de.uni_hildesheim.sse.model.confModel.Configuration cfg,

 List<Constraint> constraints,

 ReasonerConfiguration reasonerConfiguration,

 ProgressObserver observer) {

 // Here goes the implementation

 }

}

We will now discuss each of these methods in detail:

EASy-Producer Developers Guide

Page 32

 activate: This method is used to activate the reasoner plug-in. We recommend not

changing this method in order to guarantee that EASy-Producer activates the

reasoner properly.

 deactivate: This method is used to deactivate the reasoner plug-in. We recommend

not changing this method in order to guarantee that EASy-Producer deactivates the

reasoner properly.

 getDescriptor: This method returns the descriptor of this reasoner define above

stating common information about this reasoner.

 upgrade: This method updates the installation of this reasoner, e.g., in order to obtain

a licensed reasoner version if a third-party reasoner is used.

 isConsistent: This method is invokes by EASy-Producer if a given variability model

should be checked for satisfiability. However, the actual implementation of this

method depends on the reasoner.

 notify: This method is called when a reasoner message is issued.

 check: This method checks the configuration according to the given project structure.

 propagate: This method checks the configuration according to the given model and

propagates values, if possible. The concept of value propagation defines the

automatic assignment of currently unassigned decision variables of the configuration.

This automation requires the assignment of a subset of the available decision

variables and the relation of these variables to the unassigned variables in terms of

constraints in the variability model.

 evaluate: This method evaluates a given list of constraints (in the sense of boolean

conditions) which are related to and valid in the context of the given project and

configuration.

The last step is to build the plug-in. Open the plug-in manifest file and click on the Export

deployable plug-ins and fragments button in the upper right corner. In the emerging wizard select

the current plug-in project, specify the desired destination17, and click on the Finish button.

Finally, the plug-in and, thus, the reasoner is implemented, build, and ready for use. In the next

section, we will describe how to integrate a new reasoner in EASy-Producer.

3.3.3. Reasoner Integration

In the previous section, we implemented the (basic) functionalities of a new reasoner. Further,

we build a deployable plug-in, which we will use in this section for integrating the new reasoner in

an EASy-Producer installation.

The first and only step is to copy the previously build reasoner plug-in into the dropins folder of

the Eclipse application in which EASy-Producer installed. Start the Eclipse application and open

the preference page of EASy-Producer: Window � Preferences � EASy-Producer. Expand the

EASy-Producer category and select Reasoners. The new reasoner will be availabe as shown in

Figure 13.

17 The destination is up to the developer. However, we recommend using a location, which is easy to find as
we will need the location for integrating the new reasoner in Section 3.3.3.

EASy-Producer Developers Guide

Page 33

Figure 13: Reasoner preferences page

INDENICA Variability Modeling Language:
Language Specification

(corres

Software Systems Engineering (SSE)

Abstract

Creating domain-specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

document we address this

focus on how to describe

(platform) ecosystems using a variability modelling language.

In this document we specify

language (IVML) to describe customization and configuration options in service

(platform) ecosystems.

Variability Modeling Language:
Language Specification

Version 1.18
(corresponds to IVML bundle version 0.6.0)

Software Systems Engineering (SSE)
University of Hildesheim

31141 Hildesheim

Germany

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

we address this demand from the perspective of variability modeling

describe customization and configuration options in service

(platform) ecosystems using a variability modelling language.

In this document we specify the concepts of the INDENICA variability modelling

to describe customization and configuration options in service

Variability Modeling Language:

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

from the perspective of variability modeling. We

customization and configuration options in service

bility modelling

to describe customization and configuration options in service

Version

1.0

1.01

15. February 2012

29. February 2012

first version derived from D2.1

“v” as prefix in version number (technical reasons)

1.02 15. June 2012 all parenthesis follow after all “with” keywords, accessing
enum literals, camelcase for refTo and refBy

1.03 17. July 2012 DSL syntax corrected

1.04 19. July 2012 Constraint syntax, operation signatures and semantics,
grammar section (prepared), technical section, import
conventions, clarifications in using constraints

1.05 22. July 2012 grammar revised and added to document

1.06 06. August 2012 typeSelect, typeReject, side effects, undefined values

1.07 10. August 2012 examples testcased, enum access corrected in examples,
container type definition adjusted (syntax overlap with
variable declaration)

1.08 16. August 2012 Details for identifiers added, technical section deleted (see
IVML user guide)

1.09 28. November 2012 Operator precedence in grammar corrected, constraint
type added

1.10 12. December 2012 Mass assignment of attribute values

1.11 8. January 2013 Assignment operator clarifications (‘=’ vs. ‘==’)

1.12 17. January 2013 Eval clarified

1.13 11. February 2013 Compound / container initializers and attributes clarified

1.14 12. February 2013 Grammar cleanup, decision variable naming corrected

1.15 14. February 2013 Further clarifications on ‘=’

1.16 10. July 2013 Qualification clarification (reasoner dependent)

1.17 16. August 2013 Clarification on attributes, null values introduced

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents ... 3

Table of Figures .. 6

1 Introduction ... 7

2 The INDENICA Variability Modelling Approach ... 8

2.1 INDENICA Variability Modelling Core Language .. 9

2.1.1 Projects .. 9

2.1.2 Types .. 10

2.1.2.1 Basic Types ... 10

2.1.2.2 Enumerations ... 11

2.1.2.3 Container Types ... 11

2.1.2.4 Type Derivation and Restriction .. 12

2.1.2.5 Compounds .. 13

2.1.3 Decision Variables .. 14

2.1.4 Constraints ... 16

2.1.5 Configurations .. 24

2.2 Advanced Concepts of the INDENICA Variability Modelling Language 25

2.2.1 Attributes ... 25

2.2.2 Advanced Compound Modelling ... 28

2.2.2.1 Extending Compounds ... 28

2.2.2.2 Referencing Elements .. 29

2.2.3 Advanced Project Modelling .. 31

2.2.3.1 Project Versioning .. 31

2.2.3.2 Project Composition... 32

2.2.3.3 Project Interfaces ... 34

2.2.4 Advanced Configuration .. 36

2.2.4.1 Partial Configurations .. 37

2.2.4.2 Freezing Configurations ... 38

2.2.4.3 Partial Evaluation ... 40

2.2.5 Including DSLs .. 42

3 Constraints in IVML .. 44

3.1 IVML constraint language .. 44

IVML Language Specification

 4

3.1.1 Keywords .. 44

3.1.2 Prefix operators ... 44

3.1.3 Infix operators .. 44

3.1.4 Precedence rules .. 45

3.1.5 Datatypes ... 45

3.1.6 Type conformance ... 46

3.1.7 Type operations ... 46

3.1.8 Side effects ... 47

3.1.9 Undefined values ... 47

3.1.10 If-then-else-endif Expressions ... 47

3.1.11 Let Expressions ... 47

3.1.12 User-defined operations .. 47

3.1.13 Collection operations ... 48

3.2 Built-in operations ... 50

3.3 Internal Types .. 51

3.3.1 AnyType ... 51

3.3.2 MetaType ... 51

3.4 Basic Types ... 51

3.4.1 Real ... 51

3.4.2 Integer .. 52

3.4.3 Boolean .. 53

3.4.4 String .. 53

3.5 Enumeration Types .. 54

3.5.1 Enum .. 54

3.5.2 OrderedEnum ... 54

3.5.3 Constraint ... 55

3.6 Collection Types ... 55

3.6.1 Collection ... 55

3.6.2 Set .. 56

3.6.3 Sequence .. 57

3.7 Compound Types ... 58

4 IVML Grammar ... 59

4.1 Basic modeling concepts .. 59

IVML Language Specification

 5

4.2 Basic types and values ... 61

4.3 Advanced modeling concepts .. 62

4.4 Basic constraints .. 63

4.5 Advanced constraints ... 67

4.6 Terminals .. 67

References ... 69

IVML Language Specification

 6

Table of Figures

Figure 1: IVML type hierarchy .. 20

Figure 2: IVML type hierarchy .. 46

IVML Language Specification

 7

1 Introduction

This document specifies the INDENICA variability modelling language (IVML) in terms

of a live document containing the current version based on discussions with the

partners and experiences made during the project.

IVML Language Specification

 8

2 The INDENICA Variability Modelling Approach

In this section, we will describe the concepts of the INDENICA Variability Modelling

Language (IVML). In accordance to the previous sections, we will distinguish between

a core modelling language and an advanced modelling language that extends the

core language to satisfy the specific requirements that arise in the INDENICA project.

This distinction facilitates ease of use for the most standard issues in variability

modelling as it does not complicate the use of this language for users who do not

need the more advanced features. The concepts of the core modelling language are

based on the results of the discussion in D2.1. In this section, we discussed different

levels of expressiveness for basic variability modelling in INDENICA. The core

modelling language is extended by advanced modelling concepts that we identified

as prerequisites to effective and efficient variability modelling in service-based

systems and, in particular, in service (platform) ecosystems in D2.1.

The basic concepts of the IVML are related to approaches like the Text-based

Variability Language (TVL) [2], the Class Feature Relationships (Clafer) [1], the

Compositional Variability Management framework (CVM) [7], etc. However, we

decided to develop a different approach, based on decision modelling concepts, in

order to appropriately address the requirements identified in D2.1.

We will introduce a textual specification to describe the IVML concepts. This will help

to give a precise representation of the modelling concepts. The syntax, we use in this

section was developed as a basis for representing the concepts. Our presentation of

the IVML-syntax draws upon typical concepts used in programming languages, in

particular Java, and other modelling languages such as TVL [2], Clafer [1], the Object

Constraint Language (OCL) [4], or the UML [5]. The dependency management

concepts of the IVML mostly rely on the concepts of the OCL. We will adapt these

concepts as needed to provide additional operations required by IVML-specific

modelling elements, e.g. match and substitute operations for decision variables of

type string.

We will use the following styles and elements throughout this section to illustrate

the concepts of the IVML:

• The syntax as well as the examples will be illustrated in Courier New .

• Keywords will be highlighted using bold font.

• Elements and expressions that will be substituted by concrete values,

identifiers, etc. will be highlighted using italics font.

• Identifiers will be used to define names for modelling elements that allow the

clear identification of these elements. We will define identifiers following the

conventions typically used in programming languages. Identifiers may consist

of any combination of letters and numbers, while the first character must not

be a number. We recommend that the identifiers of new types start with a

capital letter to easily distinguish them from variables.

• Expressions will be separated using semicolon “; ”.

IVML Language Specification

 9

• Different types of brackets will be used to indicate lists “() ”, sets “{} ”, etc.

This is closely related to the Java programming language.

• We will indicate comments using “// ” and “/* ... */ ” (cf. Java).

We will use the following structure to describe the different concepts:

• Syntax: this is the syntax of a concept. We will use this syntax to illustrate the

valid definition of elements as well as their combination.

• Description of syntax: provides the description of the syntax and the

associated semantics. We will describe each element, the semantics and their

interaction with other elements in the model.

• Example: the concrete use of the abstract concepts is illustrated in a (simple)

example.

In Section 2.1, we will describe the INDENICA variability modelling core language. We

will introduce the required elements and expressions to define a basic configuration

space including Boolean and non-Boolean variabilities. We will further describe the

dependency management capabilities of this language to restrict configuration

spaces. Finally, we will describe the definition of (product) configurations based on

configuration spaces.

In Section 2.2 we will describe the advanced concepts of the INDENICA variability

modelling language. We will introduce extensions that are required to satisfy the

specific requirements in the INDENICA project like the support for service-

ecosystems, for service technology and meta-variability.

2.1 INDENICA Variability Modelling Core Language

This section describes the core language of the IVML. In this language, a project is

the top-level element that identifies the configuration space of a certain (software)

project. In terms of a product line, this may either be an infrastructure as a basis for

deriving products or a final product. In a project the relevant modelling elements will

be defined. We describe this in the first part of this section. In the second part, we

introduce the type system supported by the IVML. These types can be used to

declare different types of decision variables. The dependency management

capabilities to restrict the configuration space of a project will be described next.

Finally, we will introduce the configuration concept of the IVML, which enables the

definition of specific (product) configurations based on the configuration space

defined in a project.

2.1.1 Projects

In the IVML a project (project) is the top-level element in each model. This

element is mandatory as it identifies the configuration space of a certain software

project and, thus, scopes all variabilities of that software project. The definition of a

project requires a name, which simultaneously defines a namespace for all elements

of this project.

Syntax:

project name {

IVML Language Specification

 10

/* Definition of the configuration space and
configurations. */

}

Description of syntax: the definition of a new project consists of the following

elements:

• The keyword project defines that the identifier name is defined as a new

project or, to be more precise, as a new configuration space.

• name is an identifier that defines the name of the new project and, thus,

the namespace of all elements within this project.

• The elements surrounded by curly brackets define the configuration space

of the new project.

Example:

project contentSharing {

/* This will define a new project for a content-sha ring
project. This is related to our running example in D2.1
*/

}

2.1.2 Types

In a project (cf. Section 2.1.1) different kinds of core modelling elements may be

used to both represent the variabilities and define a configuration space

appropriately. We will express these kinds as formal types in IVML, thus defining a

(strongly) typed language. We distinguish between basic types, enumerations,

container types, derived and restricted types and compound types. These types can

be used to declare or define concrete decision variables. Basically, all decision

variables can be unset using the null keyword, i.e., explicitly assigning no value to a

variable.

2.1.2.1 Basic Types

In D2.1, we argued that non-Boolean variability is a must for the core expressiveness

of the INDENICA language. Thus, the IVML supports as basic types Boolean

(Boolean), integer (Integer), real (Real) and string (String) with their usual

meaning. The names of the basic types are aligned to OCL [4]. These types support

the definition of basic variabilities, e.g. the Boolean type may be used for modelling

optional variabilities. In addition, types like Integer or Real provide a basis for

defining advanced variabilities, e.g. using an Integer to define a quantitative

property for Quality of Service (QoS) as described in D2.1. In addition, IVML provides

the basic type Constraint which allows declaring constraints themselves as

variable.

IVML Language Specification

 11

2.1.2.2 Enumerations

Enumerations allow the definition of sets of named values. This is used to describe a

set of possible resolutions of a decision.

Syntax:

enum Name1 { value 1, ..., value n};

enum Name2 { value 1=n1, ..., value n=nn};

Description of syntax: the definition of a new enumeration type consists of the

following elements:

• The keyword enum defines that the identifier Name is defined as a new

enumeration.

• Name is an identifier and defines the name of the new type.

• The identifiers surrounded by curly brackets are the concrete elements of

the enumeration. A specific element of an enumeration can be accessed

using the “.”-notation, e.g. Name1. value 1.

• Specifying concrete numeric values for elements of an enumeration

(value i =n i) turns the enumeration into an ordered enumeration. This

enables relations like greater than (>) or less than (<) and operations like

next (next) or previous (previous) on the values to be used.

Example:

enum Colors {green, yellow, black, white};

enum BindingTimes {configuration=0, compile=1,

runtime=2};

2.1.2.3 Container Types

The IVML provides two container types, sequences and sets. Sequences can contain

an arbitrary number of elements of a given content type (including duplicates), while

sets are similar to sequences, but do not support duplicate elements. These types

can be used to describe a number of possible options out of which several can be

selected at the same time. Elements in a container (both sequences and sets) can be

accessed by their position in the container using an index ([index]).

The IVML supports a set of operations specific for container types, e.g. adding or

appending elements to a container, deleting elements of a container, selecting

specific elements, etc. We will introduce the full set of operations in Section 2.1.4.

Syntax:

// Declaration of a new sequence and a new set.

sequenceOf(Type) variableName 1;

IVML Language Specification

 12

setOf(Type) variableName 2;

/* Access to elements of a sequence. Sets do not ha ve
index-based access. We will discuss variables in Se ction
2.1.3. */

variableName 1[index] = value;

Description of Syntax: the definition of a container type consists of the following

elements:

• The sequenceOf and setOf keywords refer to a container of the

respective type followed by the Type of the elements contained in

brackets.

• The identifiers Name1 and Name2 are the names of the new containers.

• Accessing a specific element of a sequence container type (variable)

requires the specification of an index ([index]). An index is either “0” or

a positive integer value specifying the position of an element in a

container. Accessing a specific position is only a valid operation, if this

position has previously been set by different means like the add function

(the set of operations is introduced in Section 2.1.4).

Example:

/* Definition of a new enumeration. "blob" means "b inary
(large) objects". */

enum ContentType {text, video, audio, threeD, blob};

/* Denotes types of contents supported by a system */

sequenceOf(ContentType) basicContents =

 {ContentType.text, ContentType.audio};

2.1.2.4 Type Derivation and Restriction

The IVML allows the derivation of new types based on existing types. This supports

extensibility and adaptability as users may define their own types based on basic

types, enumerations or container types as well as on previously derived types. The

derivation may also include restrictions to the existing type, e.g. to restrict the

possible values of the new type to a subset of the values of the existing type. The

restrictions are defined by one or more constraints (we will discuss constraints in

detail below). Multiple constraints are implicitly combined by a Boolean OR. Thus, at

least one constraint has to be satisfied by the new type. The constraints will be

defined in OCL style as described in Section 2.1.4.

IVML Language Specification

 13

Syntax:

typedef Name1 Type;

typedef Name2 Type with (constraint 1, ...,

constraint n) ;

Description of Syntax: the definition of a derived type consists of the following

elements:

• The typedef keyword indicates the derivation of a new type based on an

existing type.

• The identifiers Name1 and Name2 are the names of the new types.

• The identifier Type denotes the basic type from which the new type

(Name1or Name2) will be derived.

• The optional keyword with introduces a non-empty set of constraints (c.f.

Section 2.1.4), surrounded by brackets, out of which at least one must

hold for Name2. In case of deriving Name2 from String the constraints

may define regular expressions.

Example:

/* Definition of a type "AllowedBitrates" which is a set
of Integers, i.e. a kind of alias for a complex typ e
definition. */

typedef AllowedBitrates setOf(Integer);

/* A new modelling type of the basic type integer t hat is
restricted to assume values between "128" and "256" . */

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

2.1.2.5 Compounds

A compound type groups multiple types into a single named unit (similar to structs

or records in programming languages or groups in feature modelling). This allows

combining semantically related decisions from which each element has to be

configured individually.

Syntax:

compound Name {

Type name1;

...

}

IVML Language Specification

 14

Description of Syntax: the definition of a compound type consists of the following

elements:

• The compound keyword indicates the definition of a new compound type.

• The identifier Name defines the name of the new compound type.

• The set of elements surrounded by curly brackets defines the types of the

compound type. Each declaration of a typed element is separated by a

semicolon.

Example:

/* A new compound type for the configuration of dif ferent
(web) content. The content may vary in terms of nam e and
bitrate. "Content.bitrate" is the integer within th e
compound content. */

compound Content {

String name;

Integer bitrate;

}

2.1.3 Decision Variables

The types introduced in Section 2.1.2 can be used to declare (decision) variables

representing a concrete variability. A decision variable is an element of a project

(configuration space) that basically accepts any value of its type. Constraints may

further restrict the possible values by removing certain combinations of values from

the allowed configuration space. The value given to a decision variable defines the

variant of the represented variability.

In IVML a decision variable may either be declared with or without a default value

(this is an optional parameter). Decision variables with a default value can be further

configured by overwriting their (default) value at a later point in time. However,

overwriting the default value is not necessary.

Syntax:

// Declaration of a decision variable.

Type name1;

/* Declaration of a decision variable with a defaul t
value. The "valueAssignment"-expression will be des cribed
in detail below. */

Type name2 = valueAssignment ;

IVML Language Specification

 15

Description of Syntax: the basic declaration of a new decision variable (excluding the

declaration of an optional default value) consists of the desired type (one of the

basic types, an enumeration, a container type, a derived or a restricted type, or a

compound type) followed by an identifier (name1) that states the name of the

variable.

Optionally, a default value can be assigned to a decision variable appending “=”

followed by a “ valueAssignment”- expression after the name (name2) of the

decision variable. The form of the “ valueAssignment”- expression depends on

the specific type of the declared decision variable:

• Basic types and Enumerations: an expression that yields a value of the

corresponding type and can be actually calculated, i.e., it either consists of

constants or the values of the variables are known.

• Container types: either an expression of the type of the container, which

can be statically evaluated, or a set of values separated by commas in curly

brackets after the name of the decision variable. Expressions may be used

but must be stated in parenthesis due to technical reasons. The allowed

values within the curly brackets are determined based on the base type of

the container.

• Compounds: either an expression of the type of the compound, which can

be statically evaluated, or a set of individual assignments, given in curly

brackets. Each assignment explicitly gives the field in the compound that

the assignment is made to, followed by a “=” and an expression of the

corresponding element type. Again this expression needs to be statically

evaluated.

• Derived type: the assignment follows the rules of the base type.

Example:

/* Declaration of a new variable of type integer wi th a
default value. */

Integer bitrate = 128;

/* Declaration of a new variable of type enumeratio n with
a default value (cf. Section 2.1.2.2). */

Colors backgroundColor = Colors.black;

/* Declaration of a new variable of type container
(sequence) with default values (cf. Section 2.1.2.3). */

IVML Language Specification

 16

sequenceOf(ContentType) baseContent =

 {ContentType.text, ContentType.audio};

/* Declaration of a new variable of type compound w ith
default values (cf. Section 2.1.2.5). */

Content complexContent = {name = "Text",
bitrate = 128};

2.1.4 Constraints

Constraints are used to define validity rules for a variability model, e.g. by specifying

dependencies among decision variables. The syntax of constraints in the IVML

basically follows the structure of expressions in propositional logic and, thus, is

composed of:

• Simple sentences, which represent constants, decision variables and types

which can be named by (qualified) identifiers.

• Compound sentences created by applying the operations to simple sentences

and, in turn, to compound sentences. A correct compound sentence requires

that the arguments passed to operations match the arity of the operation

and the types of the parameters or operations comply, respectively.

The operations available in IVML as well as the type compliance rules will be

discussed in the remainder of this section.

The constraints in IVML will mostly rely on the relevant part of the syntax as well as

on a large subset of the operations defined in OCL (c.f. Section 3 for a description of

all operations). In IVML we use the constraint expression syntax of OCL, but omit the

OCL contexts used to relate constraints to UML modelling elements. Similar to OCL,

all elements defined in an IVML model will be accessible to constraints. Two

examples for constraints are given below, one propositional and one first-order logic

example using a quantifier:

• (10 <= a and a <= 20) implies b == a;

If a is in the range (10; 20) this implies that b must have the same value as

a.

• mySet-> forAll(x|x > 100);

All elements in mySet must be larger than 100

Constraints may be used in two distinct ways in IVML:

• Standalone constraints: Constraints are given as statements in a project or

within a compound so that compound fields are directly accessible without

qualification. As standalone constraints are used like statements, they end

with a semicolon (as shown in the two examples above).

• Embedded constraints: One or more constraints are used as part of a

statement, for example a typedef. Here the constraint is written in

parenthesis and not ended by a semicolon.

IVML Language Specification

 17

Below we will discuss individual elements of constraints in IVML and, in particular,

the difference (in particular regarding an adapted notation) to the related elements

in OCL. Large parts of the remainder of this section are directly taken over from the

OCL specification [4] and adapted to the IVML context.

Keywords

Keywords in IVML constraint expressions are reserved words. That means that the

keywords cannot occur anywhere in an expression as the name of a decision variable

or a compound. The list of keywords is shown below:

• and
• def
• else
• endif
• if
• iff
• implies
• in
• let
• not
• or
• then
• xor
• null

Prefix operators

IVML defines two prefix operators, the unary

• Boolean negation ‘not’.

• Numerical negation ‘- ‘ which changes the sign of a Real or an Integer.

Infix operators

Similar to OCL, in IVML the use of infix operators is allowed. The operators ‘+,’ ‘- ,’

‘*. ’ ‘/ ,’ ‘<,’ ‘>,’ ‘<>’ ‘<=’ ‘>=’, ‘=’, ‘==’, ‘!=’ and ‘<>’ are used as infix operators. If a

type defines one of those operators with the correct signature, they will be used as

infix operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the “+” operation on a (the operand) with b as the parameter to the

operation. The infix operators defined for a type must have exactly one parameter.

For the infix operators ‘<,’ ‘>,’ ‘<=,’ ‘>=,’ ‘<>,’ ‘and,’ ‘or,’ ‘xor’, ‘implies’, ‘iff’ the

return type is Boolean.

Please note that, while using infix operators, in IVML Integer is a subclass of Real.

Thus, for each parameter of type Real, you can use Integer as the actual parameter.

However, the return type will always be Real.

IVML Language Specification

 18

Equality and assignment operators (default logic)

In contrast to OCL, IVML provides two operators which are related to the equality of

elements with different semantics, namely the default assignment ‘=’ and the

equality constraint operator ‘==’. We will explain the difference in this section.

Basically, a decision variable in IVML is considered as undefined, i.e., the variable

does not have an effect on the instantiation. Constraints may explicitly refer to the

undefined state via the operation “isDefined”. Please note that for instantiation all

(relevant) decision variables must be frozen (cf. Section 2.2.4.2) and that also

undefined decision variables can be frozen.

A default value may be assigned to a variable. Default values can be used to define a

basic configuration (a kind of basic profile) which applies to all products in the

product line. A default value can be defined as part of the variable declaration2 (using

the ‘=’, cf. Section 2.1.3) or in terms of an individual default assignment using the ‘=’

operator. Default values may be changed by partial configuration (cf. Section

2.2.4.1), i.e. on the import path of a (hierarchical) variability model the default value

of certain decision variables may be modified in order to adjust the basic profile, e.g.,

to a certain application setting or domain. However, a default value may only be

modified (assigned or changed) once in a given model. This restriction is required

due to the fact that IVML does not provide support to define the sequence of

evaluations (except for imports and eval blocks, cf. Section 2.2.4.3).

As the ‘=’ operator defines a default value which may be overridden, it is not possible

to use that operator to express that a decision variable must have a certain value

(under some conditions). This can be achieved using the equality operator ‘==’.

Basically, the equality operator checks whether the left hand and the right hand

operand have equal values. In two distinct cases, the equality operator enforces the

value specified by the right hand operand. The cases are the

• Unconditional value constraint, e.g., a == 5 .

• Conditional value constraint given as the right side of an implication, e.g.,

c < 5 implies a == 5 .

In these two cases, the equality operator expresses that the left hand operand (an

expression denoting a decision variable) must have the same value as the right hand

operand. If the left hand operand contains a default value, then the default value will

be overridden. However, if two expressions aim at enforcing different values for the

same decision variable, the model becomes unsatisfiable.

Precedence rules

The precedence order for the operations, starting with highest precedence, in IVML

is:

• dot and arrow operations: ‘. ’ (for element and operation access) and ‘-> ’ (to

access collection operations such as forAll or exists).

2 A decision variable declaration which defines a default value is semantically equivalent to a decision variable

declaration without default value and a subsequent default assignment (somewhere) in the same model.

IVML Language Specification

 19

• unary ‘not’ and unary minus ‘- ‘

• ‘* ’ and ‘/ ’

• ‘+’ and binary ‘- ‘

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘==’ (equality), ‘<>’, ‘!= ’ (alias for ‘<>’)

• ‘and’, ‘or’ and ‘xor’

• Default assignment ‘=’

• ‘implies’, ‘iff’

Parentheses ‘(‘ and ‘) ’ can be used to change the precedence of operators in

expressions.

Type conformance

Type conformance in IVML constraints is inspired by OCL (cf. OCL section 7.4.5):

• AnyType is the common superclass of all types. All types comply with

AnyType. However, AnyType is typically used for defining the built-in

operations. The only value of AnyType is null, which explicitly makes a decision

variable undefined.

• Each type conforms to its (transitive) supertypes. Figure 1 depicts the IVML

type hierarchy.

• Type conformance is transitive.

• The basic types do not comply with each other, i.e. they cannot be compared,

except for Integer and Real (actually the type Integer is considered as a

subclass of Real).

• Containers are parameterized types regarding the contained element type.

Containers comply only if they are of the same container type and the type of

the contained elements complies.

• The refines keyword induces a hierarchy of compounds where the

subtypes are compliant to their parent types, i.e. the parent type may be

replaced by each subtype.

IVML Language Specification

 20

• Derived types are compliant to their base type as long as if no constraints

were specified.

• MetaType is a specific type denoting types, e.g. to constrain types of

elements within a collection.

Type operations

IVML provides the isTypeOf(), isKindOf() and typeOf() operations. The first two

operations are similar to the related operations in OCL. The latter one returns the

actual type (MetaType) of a decision variable, compound field or container element.

MetaType allows equality and unequality comparisons. Currently, IVML neither

supports re-typing or casting.

Enumeration Types

Enumerations literals are used just like qualified names, i.e. using a dot. For a certain

enumeration type only the enumeration literals may be used with default

assignment (‘=’), equality (‘==’) or unequality (‘!= ’, ‘<>’) operators. In case that

ordinals are explicitly specified for enumeration literals, also relational operators (‘<’,

‘>’, ‘<=’, ‘>=’) may be used.

Compound Types

Decision variable declarations defined within a compound can be accessed using the

dot operator ‘.’.3

String Type

In addition to the string operations defined for OCL, we added two operations based

on regular expressions, namely matches and substitutes. For details please refer to

Section 3.

3 Please note that the current implementation of IVML accepts qualified and unqualified variable names within a

compound while unqualified shall be default for denoting variables within the same compound. However, the

current reasoning mechanism may not properly distinguish both cases so that a qualification with the

compound name for variables denoting variables within a compound are required.

Figure 1: IVML type hierarchy

AnyType

MetaType String Real

Integer

Boolean Enum

OrderedEnum User defined

compounds

Container<T>

Set<T> Sequence<T>

CompoundConstraint

IVML Language Specification

 21

Configuration Type

A decision variable of type Configuration represents a variable constraint. Such

a variable needs to be used somewhere in an IVML model in order to become active.

Further statements or constraints may override the constraint in such a variable.

If-then-else-endif Expressions

The if-then-else-endif construct supports determining a value depending on a

Boolean expression, similar to distinction of cases in mathematics. Exactly one

expressions must be used within the then and else parts, both yielding the same

type. The else part is not optional.

if contents[0].type == “video”

then contents[0].bitrate

else contents[0].highBitrate;

Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let

expression allows one to define a variable that can be used in the constraint. We

adjusted the notation to the IVML convention so that the type is stated before the

name.

let Integer sumBitrate = bitrates->sum()

in sumBitrate <= 256;

A let expression may be included in any kind of OCL expression. It is only known

within this specific expression.

User-defined operations

To enable the named reuse of (larger) constraint expressions, user-defined

operations can be defined. The syntax of the operation definitions is similar to the

Let expression, but each attribute and operation definition is prefixed with the

keyword def as shown below. We adjusted the notation as IVML does not have OCL

contexts (no colon after def) and that the type is stated before the name of the

operation or parameter.

def Integer actualBitrate(Contents c) =

if c.type == “video”

then c.bitrate

else c.highBitrate;

The name of an operation may not conflict with keywords, types, decision variables,

etc. An user-defined operation may be used similar to build-in operations. Please

note that prefix or infix use of user-defined operations is not supported.

actualBitrate(c) > 1024 implies highQuality == true;

IVML Language Specification

 22

Collection operations

IVML defines many operations on the collection types. These operations are

specifically meant to enable a flexible and powerful way of constraining the contents

of collections or projecting new collections from existing ones. However, we support

only a relevant subset of the various notations in OCL. The different constructs are

described in the following paragraphs. All collection operations (and only those) are

accessed using the arrow-operator ‘-> ’.

In the first versions of OCL, all collection operations returned flattened collections,

i.e. the entries of nested collections instead of the collections were taken over into

the results. However, this was considered as an issue in OCL and does not fit to the

explicit hierarchical nesting in IVML. Thus, collection operations in IVML do not apply

flattening.

Sometimes an expression using operations results in a collection, while we are

interested only in a special subset of the collection. The select operation specifies

a subset of a collection:

collection-> select(t|boolean-expression-with-t)

collection-> select(ElementType t|

boolean-expression-with-t)

Both expressions result in a collection that contains all the elements from

collection for which the boolean-expression-with-t evaluates to true.

Thereby, t is an iterator which will successively receive all values stored in

collection . In the second form the type of the elements is explicitly specified.

Note that the type of the iterator must comply with the element type of the

collection. To find the result of this expression, for each element in collection the

expression boolean-expression-with-t is evaluated. If this evaluates to true,

the element is included in the result collection, otherwise not.

Example:

/* Get all elements of the set “contents” with a
“highBitrate” of less than 128 */

contents-> select(t|t.highBitrate < 128);

The reject operation is identical to the select operation, but with reject we get the

subset of all the elements of the collection for which the expression evaluates to

False. The reject syntax is identical to the select syntax.

As shown in the previous section, the select and reject operations always result in a

sub-collection of the original collection. When we want to specify a collection which

is derived from some other collection, but which contains different objects from the

original collection (i.e., it is not a sub-collection), we can use a collect operation.

The collect operation uses the same syntax as the select and reject and is written

as one of:

collection-> collect(t|boolean-expression-with-t)

IVML Language Specification

 23

collection-> collect(ElementType t|

boolean-expression-with-t)

Many times a constraint is needed on all elements of a collection. The forAll

operation in IVML allows specifying a Boolean expression, which must hold for all

objects in a collection:

collection-> forAll(t|boolean-expression-with-t)

collection-> forAll(ElementType t|

boolean-expression-with-t)

Example:

/* None of the elements of the set “contents” must have a
”highBitrate” of greater than 512 */

contents-> forAll(t|t.highBitrate <= 512);

The forAll operation has an extended variant in which more than one iterator is

used. Both iterators will iterate over the complete collection. Effectively this is a

forAll on the Cartesian product of the collection with itself.

collection-> forAll(t1, t2|

boolean-expression-with-t1-and-t2)

collection-> forAll(ElementType t1, t2|

boolean-expression-with-t1-and-t2)

Many times one needs to know whether there is at least one element in a collection

for which a constraint holds. The exists operation in IVML allows you to specify a

Boolean expression that must hold for at least one object in a collection:

collection-> exists(t|boolean-expression-with-t)

collection-> exists(ElementType t|

boolean-expression-with-t)

Depending on the type of the collection further related operation may be defined

such as isUnique. Details will be given in Section 3 where we describe all

operations in detail.

One special case of collection operation is to aggregate one value over all values in a

collection by applying a certain expression or function. However, this comes close to

the iterate operation in OCL. As we specifically target value aggregations define the

apply operation while reusing the already known syntax:

collection-> apply(t, ResultType r = initial|

r = expression-with-t)

IVML Language Specification

 24

collection-> apply(ElementType t, ResultType r = initial|

r = expression-with-t)

This operation initializes the result “iterator” r with the initial expression and

applies the expression-with-t to each element in the collection. The result of

expression-with-t is used to update successively the result “iterator”. Finally,

the operation returns the value of r after processing the last element in

collection . Please note that the result “iterator” is always defined using a specific

type which, in turn, defines the result type of the apply operation.

Example:

/* Return the sum of all (default) bitrates of the
elements of the set “contents” */

contents-> apply(t, Integer r| r == t.bitrate);

2.1.5 Configurations

The IVML does not differentiate between a configuration space and specific

(product) configurations. Instead, a project can simultaneously describe or extend a

configuration space and define a configuration. However, typically a project will

provide a configuration space, while a different project may extend it, while

providing configurations information for the initially specified configuration space.

The set of decision variables and constraints of a project represent the set of all

possible configurations. In addition, default values of decision variables as described

in Section 2.1.3 define basic configurations and, thus, do not need to be further

configured, but can be overwritten later as well. In addition, some values of decision

variables can be derived using constraints. Any configuration, independent of where

the values come from, must comply with the relevant constraints.

Configurations in the IVML do not require any specific or additional keyword. They

are simply given by variable assignments. We illustrate this concept by a simple

example.

Example:

/* A project that represents both a configuration s pace
and a configuration. The constraint implies a valid
configuration with a bitrate value between "128" an d "256"
and "content == text" (if no further configuration is
done). */

project contentSharing {

enum ContentType {text, video, audio, threeD, blob};

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

ContentType content ;

IVML Language Specification

 25

Bitrate contentBitrate = 128;

contentBitrate == 128 implies

content == ContentType.text;

}

2.2 Advanced Concepts of the INDENICA Variability Modelling

Language

This section describes advanced concepts of the IVML. We will describe how to

assign additional attributes to modelling elements. This allows describing certain

modelling elements in more detail, e.g. assigning meta-variability information as

described in D2.1. We then augment the compound types introduced in Section

2.1.2.5 by extension and referencing concepts. Extension concepts will also be

introduced for projects (cf. Section 2.1.1), which cover modularization aspects as

well as facilitating project composition. We will describe advanced configuration

concepts including partial configurations as well as “freezing” configurations. Finally,

we will describe a lightweight concept for including DSLs as part of a variability

model.

2.2.1 Attributes

In the IVML modelling elements can be attributed by further (orthogonal)

configuration capabilities, e.g. to express meta-variability such as binding times. An

attribute in IVML is basically a decision variable that is attached to another modelling

element describing this element in more detail. Thus, an attribute may also have a

default value and may be restricted by constraints (cf. Section 2.1.4). The impact of

an attribute depends on the element it is attached to. In the IVML the following

modelling elements can be attributed:

• Decision variable: attributes that are attached to a decision variable only

describe this variable further. Depending on the type of the decision variable,

the attributes of the variable also describe its elements, e.g. the various fields

of a compound variable. These fields may have additional attributes.

Changing the value of a decision variable attribute will not cause any

modification to elements outside the scope of the specific variable (as far as

they are not connected by constraints).

• Project: attributes that are attached to a project will affect all variables of this

project.

As the different elements may be nested, different values can be given for the same

attribute on the outer and the inner scope.

Syntax:

attribute Type name1 to name2;

attribute Type name3 = value to name4;

IVML Language Specification

 26

Description of Syntax: the definition of an attribute consists of the following

elements:

• The attribute keyword indicates the definition of a new attribute.

• The expressions Type name1 and Type name3 correspond to the

definition of a decision variable described in Section 2.1.3 while name1 and

name3 are the identifiers of the new attributes4.

• The to keyword indicates the attachment of the new attribute on the left

side to the element (name4) denoted on the right side. Multiple names

may be given separated by commas

• name4 may be one of the elements described above to which the attribute

is attached.

• Optionally, a default value (value) can be assigned to the attribute by

appending a value expression after name3.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an attribute to the entire project.

attribute BindingTimes binding = BindingTimes.compile
to contentSharing;

}

Attributes can also be used in initializing expressions for containers and compounds.

This is demonstrated in the fragment below:

compound Content {

String name;

Integer bitrate;

}

Content content;

attribute BindingTimes binding = BindingTimes.compile
 to content;

4 Due to technical reasons, currently attributes must not start with ‘v’ or ‘e’.

IVML Language Specification

 27

content = {name=”Video”, bitrate=128,
 name.binding=BindingTimes.compile,
 bitrate.binding=BindingTimes.runtime};

However, assigning the same value for a certain attribute for a given set of decision

variables may increase the perceived complexity of the model as similar assignments

are repeated.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an attribute to the entire project.

attribute BindingTimes binding = BindingTimes.compile
to contentSharing;

enum Colors {black, white};

Bitrate contentBitrate = 128;

contentBitrate.binding = BindingTimes.configuration ;

Colors backgroundColor = Colors.black;

backgroundColor.binding = BindingTimes.configuratio n;

// go on with several variables and different bindi ng

// times

}

IVML provides the assign construct as syntactic sugar to simplify the mass-

assignment of values to attributes and to visually group the model elements with

same (initial) attribute assignment. However, the variables “declared” in the assign

block actually are part of the containing element, in the example below the project

contentSharing . An assign block can also be used within compounds, it may even

be nested in other assign blocks if needed or multiple attributes may be given in

comma-separated fashion in the parenthesis of an assign block. As an assign block is

technically translated into individual assignment constraints (‘=’) as stated as a

generic constraint in the parenthesis of an assign block.

Example:

project contentSharing {

IVML Language Specification

 28

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an attribute to the entire project.

attribute BindingTimes binding = BindingTimes.compile
to contentSharing;

enum Colors {black, white};

assign (binding = BindingTimes.configuration) to {

Bitrate contentBitrate = 128;

Colors backgroundColor = Colors.black;

// go on with the variables of the same binding tim e

 }

 }

2.2.2 Advanced Compound Modelling

In Section 2.1.2.5 we introduced the compound types to group multiple types into a

single named unit. In this section, we will extend the modelling of compound types

by refinement and referencing concepts. Refinement allows extending existing

compound types by additional elements, yielding a new (extended) compound type.

Referencing enables the definition of references to other elements like other

compounds.

2.2.2.1 Extending Compounds

In the IVML a compound may extend the definition of a previously defined (parent)

compound. This is indicated by the refines keyword. Extending compound types is

similar to subclassing in object-oriented languages, i.e. parentType becomes a

subtype of compoundType and compoundType may define further decision

variables.

Syntax:

compound Name1 refines Name2 {

// Define additional elements.

}

Description of Syntax: the definition of an extended compound type consists of the

following elements:

• The compound keyword indicates the definition of a new compound type.

• The identifier Name1 defines the name of the new compound type.

• The refines keyword indicates that the new compound type (Name1) is

an extension of a previously defined compound type (Name2).

IVML Language Specification

 29

• The set of elements surrounded by curly brackets defines the additional

elements that make up the extensions to the inherited elements of

compound Name2.

Example:

/* A compound type for the configuration of differe nt
(web) content. */

compound Content {

String name;

Integer bitrate;

}

/* A new compound type that refines the previous co mpound
type. "ExternalContent" will subsume all elements o f
"Content" and all additional elements defined below . */

compound ExternalContent refines Content {

String contentPath;

String accessPassword;

}

2.2.2.2 Referencing Elements

The IVML supports referencing of (other) elements, for example, other compounds

within a compound type. A reference allows the definition of individual

configurations of an (external) element for the referencing element without

including the external element as part of the referencing element explicitly. This is

indicated by the refTo keyword used for the definition of a reference and the

refBy keyword that indicates the configuration of a referenced element.

Syntax:

project name1 {

compound Name2 {

Type name3;

...

}

// Declaration of a new reference.

refTo(Name2) Name4;

IVML Language Specification

 30

// Configuration of a referenced element.

refBy(Name4). name3 = value ;

}

Description of Syntax: the definition and the configuration of a reference consist of

the following elements:

• The refTo keyword indicates the definition of a new reference.

• Name2 defines the referenced element (type).

• Name4 is an identifier and defines the name of the new reference. In the

IVML a reference is type, thus, the identifier for a new reference starts

with a capital letter.

• The refBy keyword indicates the configuration of a reference (the

configuration of the referenced element respectively).

• Name4 is an identifier that defines the reference to be configured.

• The syntax for configuring a reference depends on the type of the

referenced element (see Section 2.1.3 for the syntax for assigning values

to variables of a specific type). In the case above, we use “. ”-notation to

configure a single element of a referenced compound type.

Example:

/* A compound type for the configuration of differe nt web
containers being responsible for serving web conten t. */

compound Container {

String name;

...

}

/* Another compound type for the configuration of
different (web) content referencing the "Container" type
to configure its individual web container. */

compound Content {

String name;

Integer bitrate;

IVML Language Specification

 31

// Declaration of a reference to the Container comp ound.

refTo(Container) myContainer;

// Configuration of the above reference.

refBy(myContainer).name = “ContentContainer”;

}

2.2.3 Advanced Project Modelling

In Section 2.1.1, we introduced the concept of projects (project) as the top-level

element in each IVML-model. In this section, we extend the modelling capabilities of

the IVML regarding projects in three ways: first, we describe versioning of projects

that enables the definition of the current state of evolution of a project. This

concepts correlates with the second concept: project composition. This introduces

the capability of deriving new projects based on definitions in other projects and

explicitly excluding certain projects from the composition. As part of this version

information can be used. The third concept is project interface. The concepts of

project composition and project interfaces support effective modularization and

reuse of projects and, thus, configuration spaces.

2.2.3.1 Project Versioning

In IVML, projects can be versioned to define the current state of evolution of a

project (and the represented product line infrastructure). Evolution of software may

yield updates to projects. This can be described by a version. For defining a version,

the version keyword is followed by a version number. This must be the very first

element of the respective project. The version number consists of integer values

separated by “. ” assuming that the first value defines the major version, while

following numbers indicate minor versions. The level of detail of version numbers is

determined by the domain engineer.

Syntax:

project name {

// Definition of a version for this project

version vNumber . Number;

...

}

Description of Syntax: the attachment of a version to a project consists of the

following elements:

• The version keyword indicates the definition of a new version for the

project name.

IVML Language Specification

 32

• vNumber . Number defines the actual version of the project (here only two

parts prefixed by a “v”). At least one number must be given and no

restriction holds on the amount of sub-version numbers.

Example:

project contentSharing {

version v1.0;

...

}

2.2.3.2 Project Composition

The IVML supports the composition of different projects. This is closely related to

multi software product lines [8] and product populations [9]. Project composition

allows to effectively reusing existing projects by using these projects within other

projects. This also supports the decomposition of large variability models as

semantically related parts can be defined in individual projects. The complete project

then uses these (sub-) projects to define the combined project. In the IVML the

following keywords are introduced for project composition:

• import: this keyword indicates the use of a project. An imported project is

evaluated before import, thus an import acts as an implicit eval. This keyword

allows using certain elements of a project by reference. If a project contains

explicit interfaces (see below), the specific interface, which is used, must be

given.

However, multiple projects with identical names and versions may exist in a

file system
5
, in particular in hierarchical product lines. Thus, project imports

are determined according to the following hierarchical import convention,

i.e. starting at the (file) location of the importing project (giving precedence

to imports in the same file) the following locations are considered in the

given sequence: The same directory, then contained directories (closest

directories are preferred) and finally containing directories (also here closest

directories are preferred). Similar to Java class paths, additional model paths
6

may be considered in addition to the immediate file hierarchy.

• conflicts: this keyword indicates incompatibility among projects. All

projects (names) followed by this keyword cannot be used in combination

with the project that defines this conflict expression. This is also checked for

indirectly used projects. Also project names in conflicts are resolved

according to the hierarchical import convention defined above.

The keywords import and conflicts, introduced above, can be combined with

version expressions using the with keyword and the version-information of a

5 The implementation of the tool support decides whether the entire file system or a subtree is considered. In

EasY-Producer, currently the entire active workspace is considered.

6 The actual implementation is already prepared for model paths. Depending on the actual use we will include

model paths into the user-level of the tool support.

IVML Language Specification

 33

project introduced in Section 2.2.3.1. Note, that versions restrictions are no fully-

fledged constraints and only the relational operators ‘<’, ‘>’, ‘<=’, ‘>=’ as well as the

equality operators ‘=’, ‘==’, ‘<>’, ‘!=’ may be used here. Please note that version

numbers start with “v” (cf. Section 2.2.3.1).

Syntax:

project name1 {

/* This introduces the project name2. Optionally, a
version may restrict name2 to a specific version as it
is shown below. */

import name2;

// Accessing elements of a project.

name2:: element ;

/* This introduces incompatibility of project name1 with
project name 3 of version greater than Number.Number . */

conflicts name3 with (name3. version > v Number.Number);

}

Description of syntax: the definition of a new project composition consists of the

following elements:

• The keyword import indicates that the entities, which are made available

by the project or interface name2 will be available within the current

project.

• For disambiguation the elements of name2 can be accessed using the “:: ”-

notation to express qualified names. If there is no ambiguity, they can be

used directly.

• The keyword conflicts indicates incompatibility of project name1 with

project name3.

• Optionally, version-expressions can be combined with the keywords

import and conflicts using the with keyword. This defines specific

versions of other projects to be imported into the current project or

conflicting with the current project.

• A version expression includes the version-information of a project (cf.

Section 2.2.3.1), a relation operator and a version number or a version-

information of another project. In addition, logical operators can be used

to concatenate simple version-expressions to define ranges of versions.

IVML Language Specification

 34

Example:

project application {

/* This will define a new project for content-shari ng
applications. */

String name;

}

project targetPlatform {

// This will define a new project for target platfo rms.

version v1.5;

String name;

}

project contentSharing {

/* This will define a new project for a content-sha ring
project importing two sub-projects "application" an d
"targetPlatform". The latter sub-project must be of
version "1.3" or higher. */

import application;

import targetPlatform
with (targetPlatform.version >= v1.3);

// Accessing the elements of the sub-projects.

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

2.2.3.3 Project Interfaces

By default, all elements defined in a project are visible when they are imported into

another project. In order to support effective modularization and reuse of variability

models, we introduce interfaces to projects. Interfaces reduce the complexity in

large-scale projects and provide means to automate the configuration of lower-level

decisions based on high-level decisions.

IVML Language Specification

 35

Interfaces in a project define all elements of a project, not part of the interface, as

private and, thus, make them invisible to the outside. This is indicated by the

interface keyword within a project. In order to access any elements they need to

be declared as parameters of the interface. This can be done by exporting existing

variables (using the export keyword) or by declaring new parameter variables. As a

special characteristic of the IVML, it is also possible to define multiple interfaces for

the same project. This is different from other variability modelling languages like the

CVL [6].

Importing a project (cf. Section 2.2.3.2) that includes interfaces allows the importing

project to access only the parameters defined in the interface. All other elements of

the project are not visible to the importing project.

Syntax:

project name1 {

// Definition of a new interface.

interface Name2 {

/* Denotes the export of an existing decision varia ble
of the project name1. */

export name3;

...

}

/* Declaration of a (private) decision variable. Th is
variable is exported by the interface Name2. */

Type name3;

}

Description of syntax: the definition of a new project interface consists of the

following elements:

• The keyword interface indicates the definition of a new interface of the

project name1. Interfaces must occur at the beginning of a project before

decision variable or type definitions.

• The keyword export indicates the export of the following decision

variable name3.

Example:

project application {

// This will define an interface for this project.

IVML Language Specification

 36

interface MyInterface {

export name, appType;

}

// Declaration of (private) decision variables.

String name;

String appType ;

Integer bitrate;

// Definition of a constraint.

appType == "Video" implies bitrate == 256;

}

project contentSharing {

/* This will import the interface "MyInterface" of
project "application". */

import application::MyInterface;

/* Only the parameters of the interfaces are access ible.
"application::bitrate" yields an error. As long as the
variable names are unambiguous, the fully qualified must
not be used. */

name = "myApp";

appType = "Video";

}

2.2.4 Advanced Configuration

In Section 2.1.5, we introduced the configuration concept of the IVML. In this

section, we will extend this concept to partial configuration. Partial configuration

allows the configuration of a project in terms of multiple configuration steps, each

configuring only parts of the project. The set of all configuration steps typically yield

a full configuration of the entire project. We will further introduce the concept of

persistent (parts of) configurations. We call this “freezing”. Freezing (parts of)

configurations defines these parts to be persistent. Persistent parts cannot be

IVML Language Specification

 37

changed anymore in further configuration steps. Finally, we will describe how (parts

of) configurations can be evaluated independently from other parts of the

configuration. This allows deriving additional configuration values based on existing

configurations using the constraints and value propagation.

2.2.4.1 Partial Configurations

The IVML supports partial configurations. Partial configuration allows the

configuration of a project in terms of multiple configuration steps, each configuring

only parts of the project. The set of all configuration steps typically yields a full

configuration of the entire project. The configuration of a part of a project may also

be reconfigured by the next configuration step (cf. the concept of default values,

which we introduced in Section 2.1.3). For example, a service provider may define a

(pre-) configuration of the provided service, while a service consumer may

reconfigure his service to satisfy his specific needs.

Partial configuration in the IVML is a straight-forward consequence of the concepts

introduced so far. We illustrate this concept by a simple example.

Example:

project application {

/* This defines a new project for content-sharing
applications including the (pre-) configuration of the
configuration element. This is also the first
configuration step.*/

String name = "Application";

}

project targetPlatform {

/* This defines a new project for target platforms
without any configuration. */

String name;

}

project contentSharing {

/* This defines a new project for a content-sharing
project and imports two sub-projects "application" and
"targetPlatform". */

import application;

import targetPlatform;

IVML Language Specification

 38

/* This is the second configuration step, including the
re-configuration of the name-element of the sub-pro ject
"application" and a configuration of the name-eleme nt of
the sub-project "targetPlatform". */

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

2.2.4.2 Freezing Configurations

In the previous section we described the concept of partial configuration. This

included the possibility to re-configure existing (pre-) configurations. Although re-

configuration is reasonable in some cases, e.g. to modify a given configuration to

satisfy an individual need, at the end we desire a persistent configuration to define a

specific product. For example, service consumers should not be able to reconfigure

some parts of a configuration defined by a service provider.

We introduce the concept of “freezing” configurations. This is indicated by the

keyword freeze. Freezing configurations define the current (partial) configuration

to be persistent. Persistent configurations cannot be changed anymore in the course

of the configuration. Excluding elements of a configuration from being frozen, e.g.

freezing only some elements of imported projects or a compound type, the but

keyword can be attached after a freeze-expression. All elements followed by a but-

expression will not be frozen.

Freezing an undefined variable v leaves v undefined so that v does not have an

effect. In particular, v may be changed afterwards and v may be part of a

configuration implicitly disabling some instantiation.

Syntax:

project name1 {

// Definition of new compound type

compound Name2 {

Type name3;

Type name4;

}

/* Declaration of a new decision variable of the ab ove
type */

Name2 name 6;

IVML Language Specification

 39

/* Freezing the configuration of the decision varia ble
except element name4. */

name6.name 3 = value 1;

freeze {

name6;

} but (name6.name 4)

}

Description of syntax: the definition of persistent (parts of) configurations consists

of the following elements:

• The keyword freeze indicates that all elements with their current values

within the following curly brackets are persistent.

• Optionally, the keyword but indicates a set of elements that is excluded

from being persistent. All elements of this set can be further configured.

The but-expression may also include wildcards (*) which are necessary

especially in large models. Attaching a wildcard to an element, e.g.

name6. * , yields all elements of name6 to be excluded from being frozen.

Example:

project application {

/* Definition of a new compound type for the
configuration of the content type of an application . */

compound ContentType {

String contentName;

Integer bitrate;

}

// Declaration of a decision variable of the above type.

ContentType appContent;

/* Definition of the content name to be persistent. The
required bitrate for this content may be configured as
part of the configuration of the container type for this
content. */

appContent.contentName = "Text";

freeze {

IVML Language Specification

 40

appContent;

} but (appContent.bitrate)

}

2.2.4.3 Partial Evaluation

The IVML provides a concept for the evaluation of configurations. This is indicated by

the keyword eval. The explicit declaration of nested eval structures can be used to

structure the definition of the variables and thus reduces the search-space during

constraint-evaluation. By default, the top-level eval structure is the containing

project, i.e., at the end of a project definition an implicit eval occurs as the project

is the topmost eval. eval structures on the same nesting level do not imply a

sequence of evaluation as this is true for the constraints in a project.

Currently, an eval statement may only contain constraints, i.e., variables are project

global and no variables can be defined in an eval (this may change in future, then

variables would be propagated from inside the eval the outside eval or project).

Syntax:

/* Evaluate a constraint that defines the relation between
two variables of the same type. This leads to the
assignment of the variable values to the unassigned
variable upon exit of the scope of the eval-stateme nt.
Note that this eval is evaluated before any other
constraint in the project is evaluated.*/

eval {

name1 = name2;

}

Description of syntax: the evaluation of a configuration requires an eval-statement

using the keyword eval followed by curly brackets.

Example:

project application {

/* Definition of a new compound type for the
configuration of the content type of an application . */

compound ContentType {

String contentName;

Integer bitrate;

IVML Language Specification

 41

}

// Declaration of a decision variable of the above type.

ContentType appContent;

/* Definition of the content name and bitrate. This
configuration is evaluated explicitly to minimize t he
search space. */

eval {

appContent.contentName == "Text" implies

appContent.bitrate = 128;
}

}

project targetPlatform {

/* Define a new project for target platforms withou t any
configuration.*/

String name;

Integer bitrate ;

}

project contentSharing {

/* Define a new project for a content-sharing proje ct
importing two sub-projects "application" and
"targetPlatform".*/

import application;

import targetPlatform;

/* This constraint restricts the bitrate of the tar get
platform to be equal or greater than the bitrate of the
application content. The bitrate of the target plat form
can be derived from the bitrate of the application
content: "targetPlatform::bitrate == 128". At the e nd of
a project definition an implicit evaluation for the
whole project is done. */

targetPlatform::bitrate
>= application::appContent.bitrate;

IVML Language Specification

 42

}

2.2.5 Including DSLs

The IVML includes a lightweight concept for including domain-specific languages

(DSLs) as part of the variability model. This supports situations, in which the

variability may be expressed more intuitively or more naturally using DSLs.

DSLs can be embedded in IVML in terms of external language sections similar to

inline assembler code in higher languages. The embedded DSL code is preprocessed

in order to consider actual decision values during DSL evaluation, passed to a DSL-

specific tool for evaluation and the result of the evaluation is considered as part of

the actual IVML model, which triggered the evaluation. The evaluation result is

interpreted as a part of the final IVML description.

Syntax7:

DSL(stopString , prefix , dslInterpreter) %

// here goes the DSL

DSL%;

Description of syntax: an external language section for a DSL is introduced by the

keyword DSL and closed by DSL%. The parameters of the opening DSL keyword are:

• The stopString identifier8 is a string used for uniquely identifying the

end of the DSL in combination with the DSL keyword. The part between

the opening DSL keyword (excluding its parameters in parentheses) and

the closing DSL keyword (marked by the stopString) is not analyzed by

the IVML tools but passed to an external DSL interpreter for evaluation.

• The prefix identifier is a string identifying a DSL-specific prefix for IVML

identifiers denoting decision variables. When passing the DSL code to the

DSL specific tools, all occurrences of decision variables marked by the

prefix are replaced by actual values for the individual decisions.

• The dslInterpreter identifier is a string containing, for example, a file

name or an URI specifying the concrete DSL tool which is responsible for

evaluating the instantiated DSL code, i.e. after substituting occurrences of

decision variables.

Example:

project application {

7 Technically, a DSL fragment is implemented as an expression of AnyType. AnyType is the common supertype in

the type system of OCL and IVML. However, in IVML AnyType cannot be used in subexpressions, i.e. a DSL

fragment is written as a standalone expression statement while the use within an expression is syntactically but

not semantically correct.

8 Due to technical reasons implementing this concept in xText, the stopString is now fixed to DSL%. The

parameter stopString is kept as parameter for legacy reasons but may be subject to removal in future versions.

IVML Language Specification

 43

/* Declaration of a decision variable with a defaul t
value. */

Integer bitrate = 128;

/* Declaration of an embedded DSL section within an IVML
project. */

DSL("dsl.com","$","http://www.dsl.com/dslInterpreter") %

/* The actual DSL statements will be placed between
the DSL keywords. */

...

/* Applying IVML decision variables to DSL statemen ts
by using the DSL-specific prefix "$" defined above. */

... $bitrate ...

DSL%;

}

IVML Language Specification

 44

3 Constraints in IVML

In this section we will describe syntax and semantics of the IVML constraint

sublanguage. In Section 3.1 we will describe the constraint language and in Section

3.2 the built-in operation which can be used within constraint expressions.

3.1 IVML constraint language

In this section we will define the syntax and the semantics of the IVML constraint

language. As constraints in IVML heavily rely on OCL, most of the content in this

section is taken from OCL [4] and adjusted to the notational conventions and the

semantics of IVML.

3.1.1 Keywords

Keywords in IVML constraint expressions are reserved words. That means that the

keywords cannot occur anywhere in an expression as the name of a decision variable

or a compound. The list of keywords is shown below:

• and
• def
• else
• endif
• if
• iff
• implies
• in
• let
• not
• or
• then
• xor

3.1.2 Prefix operators

IVML defines two prefix operators, the unary

• Boolean negation ‘not’.

• Numerical negation ‘- ‘ which changes the sign of a Real or an Integer.

3.1.3 Infix operators

Similar to OCL, in IVML the use of infix operators is allowed. The operators ‘+,’ ‘- ,’

‘*. ’ ‘/ ,’ ‘<,’ ‘>,’ ‘<>’ ‘<=’ ‘>=’ are used as infix operators. If a type defines one of

those operators with the correct signature, they will be used as infix operators. The

expression:

a + b

is conceptually equal to the expression:

a.+(b)

IVML Language Specification

 45

that is, invoking the “+” operation on a (the operand) with b as the parameter to the

operation. The infix operators defined for a type must have exactly one parameter.

For the infix operators ‘<,’ ‘>,’ ‘<=,’ ‘>=,’ ‘<>,’ ‘and,’ ‘or,’ ‘xor’, ‘implies’, ‘iff’ the

return type must be Boolean.

Please note that, while using infix operators, in IVML integer is a subclass of real.

Thus, for each parameter of type real, you can use integer as the actual parameter.

However, the return type will always be real. We will detail the operations on basic

types in Section 3.4.

3.1.4 Precedence rules

The precedence order for the operations, starting with highest precedence, in IVML

is:

• dot and arrow operations: ‘. ’ (for element and operation access) and ‘-> ’ (to

access collection operations such as forAll or exists).

• unary ‘not’ and unary minus ‘- ‘

• ‘* ’ and ‘/ ’

• ‘+’ and binary ‘- ‘

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘==’ (equality), ‘<>’, ‘!= ’ (alias for ‘<>’)

• ‘and’, ‘or’ and ‘xor’

• Default assignment ‘=’

• ‘implies’, ‘iff’

Parentheses ‘(‘ and ‘) ’ can be used to change precedence.

3.1.5 Datatypes

All datatypes defined in IVML including the user-defined ones such as compounds,

restricted types or attributes are available to the constraint language and may be

used in constraint expressions. Below, we give some specific notes on the use of

datatypes, in particular in relation to OCL.

• In addition to the string operations defined for OCL, we added two

operations based on regular expressions, namely matches and substitutes.

For details please refer to Section 3.

• Enumerations literals are used just like qualified names, i.e. using a dot. For a

certain enumeration type only the enumeration literals may be used with

assignment (‘=’), equality (‘==’) or inequality (‘!= ’, ‘<>’) operators. In case

that ordinals are explicitly specified for enumeration literals, also relational

operators (‘<’, ‘>’, ‘<=’, ‘>=’) may be used.

• Decision variable declarations defined within a compound can be accessed

using the dot operator ‘.’.

IVML Language Specification

 46

3.1.6 Type conformance

Type conformance in IVML constraints is inspired by OCL (cf. OCL section 7.4.5):

• AnyType is the common superclass of all types. All types comply with

AnyType. However, AnyType is typically used for defining the built-in

operations.

• Each type conforms to its (transitive) supertypes. Figure 1 depicts the IVML

type hierarchy.

• Type conformance is transitive.

• The basic types do not comply with each other, i.e. they cannot be compared,

except for Integer and Real (actually the type Integer is considered as a

subclass of Real).

• Containers are parameterized types regarding the contained element type.

Containers comply only if they are of the same container type and the type of

the contained elements complies.

• The refines keyword induces a hierarchy of compounds where the

subtypes are compliant to their parent types, i.e. the parent type may be

replaced by each subtype.

• Derived types are compliant to their base type as long as if no constraints

were specified.

• MetaType is a specific type denoting types, e.g. to constrain types of

elements within a collection.

3.1.7 Type operations

IVML provides the following type-specific operations: isTypeOf(), isKindOf() and

typeOf(). The first two operations are similar to the related operations in OCL. The

latter one returns the actual type (MetaType) of a decision variable, compound field

or container element. MetaType allows equality and unequality comparisons. In

addition, the collections provide the operations typeSelect and typeReject which

select elements from a collection according to their actual type based on the

isTypeOf operation. Currently, IVML neither supports re-typing or casting.

Figure 2: IVML type hierarchy

AnyType

MetaType String Real

Integer

Boolean Enum

OrderedEnum User defined

compounds

Container<T>

Set<T> Sequence<T>

Compound

IVML Language Specification

 47

3.1.8 Side effects

IVML is designed as a modelling and configuration language for Software Product

Lines. As a configuration language, an assignment of values to decision variables is

mandatory. Thus, in contrast to OCL, some constraint expressions in IVML may lead

to side effects in terms of value assignments (‘=’). Please note that all operations

except for assignments are free of side effects (similar to OCL).

3.1.9 Undefined values

Basically, variables are undefined in order to enable partial configuration. Unless a

default value (‘=’) or a value (via the constraint operator ‘==’) is assigned. Due to

undefined variables, some expressions will, when evaluated, have an undefined

value. During evaluation, undefined (sub-) expressions are ignored.

3.1.10 If-then-else-endif Expressions

The if-then-else-endif construct supports determining a value depending on a

Boolean expression, similar to distinction of cases in mathematics. Exactly one

expressions must be used within the then and else parts, both yielding the same

type. The else part is not optional.

If contents[0].type == “video”

then contents[0].bitrate

else contents[0].highBitrate;

3.1.11 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let

expression allows one to define a variable that can be used in the constraint. We

adjusted the notation to the IVML convention so that the type is stated before the

name.

let Integer sumBitrate = bitrates->sum()

in sumBitrate <= 256;

A let expression may be included in any kind of OCL expression. It is only known

within this specific expression.

3.1.12 User-defined operations

To enable the named reuse of (larger) constraint expressions, user-defined

operations can be defined. The syntax of the operation definitions is similar to the

Let expression, but each attribute and operation definition is prefixed with the

keyword def as shown below. We adjusted the notation as IVML does not have OCL

contexts (no colon after def) and that the type is stated before the name of the

operation or parameter.

def Integer actualBitrate(Contents c) =

If c.type == “video”

IVML Language Specification

 48

then c.bitrate

else c.highBitrate;

The name of an operation may not conflict with keywords, types, decision variables,

etc. An user-defined operation may be used similar to build-in operations. Please

note that prefix or infix use of user-defined operations is not supported.

actualBitrate(c) > 1024 implies highQuality == true;

3.1.13 Collection operations

IVML defines many operations on the collection types. These operations are

specifically meant to enable a flexible and powerful way of constraining the contents

of collections or projecting new collections from existing ones. However, we support

only a relevant subset of the various notations in OCL. The different constructs are

described in the following paragraphs. All collection operations (and only those) are

accessed using the arrow-operator ‘-> ’.

In the first versions of OCL, all collection operations returned flattened collections,

i.e. the entries of nested collections instead of the collections were taken over into

the results. However, this was considered as an issue in OCL and does not fit to the

explicit hierarchical nesting in IVML. Thus, collection operations in IVML do not apply

flattening.

Sometimes an expression using operations results in a collection, while we are

interested only in a special subset of the collection. The select operation specifies

a subset of a collection:

collection-> select(t|boolean-expression-with-t)

collection-> select(ElementType t|

boolean-expression-with-t)

Both expressions result in a collection that contains all the elements from

collection for which the boolean-expression-with-t evaluates to true.

Thereby, t is an iterator which will successively receive all values stored in

collection . In the second form the type of the elements is explicitly specified.

Note that the type of the iterator must comply with the element type of the

collection. To find the result of this expression, for each element in collection the

expression boolean-expression-with-t is evaluated. If this evaluates to true,

the element is included in the result collection, otherwise not.

Example:

/* Get all elements of the set “contents” with a
“highBitrate” of less than 128 */

contents-> select(t|t.highBitrate < 128);

IVML Language Specification

 49

The reject operation is identical to the select operation, but with reject we get the

subset of all the elements of the collection for which the expression evaluates to

False. The reject syntax is identical to the select syntax.

As shown in the previous section, the select and reject operations always result in a

sub-collection of the original collection. When we want to specify a collection which

is derived from some other collection, but which contains different objects from the

original collection (i.e., it is not a sub-collection), we can use a collect operation.

The collect operation uses the same syntax as the select and reject and is written

as one of:

collection-> collect(t|boolean-expression-with-t)

collection-> collect(ElementType t|

boolean-expression-with-t)

Many times a constraint is needed on all elements of a collection. The forAll

operation in IVML allows specifying a Boolean expression, which must hold for all

objects in a collection:

collection-> forAll(t|boolean-expression-with-t)

collection-> forAll(ElementType t|

boolean-expression-with-t)

Example:

/* None of the elements of the set “contents” must have a
”highBitrate” of greater than 512 */

contents-> forAll(t|t.highBitrate <= 512);

The forAll operation has an extended variant in which more than one iterator is

used. Both iterators will iterate over the complete collection. Effectively this is a

forAll on the Cartesian product of the collection with itself.

collection-> forAll(t1, t2|

boolean-expression-with-t1-and-t2)

collection-> forAll(ElementType t1, t2|

boolean-expression-with-t1-and-t2)

Many times one needs to know whether there is at least one element in a collection

for which a constraint holds. The exists operation in IVML allows you to specify a

Boolean expression that must hold for at least one object in a collection:

collection-> exists(t|boolean-expression-with-t)

collection-> exists(ElementType t|

boolean-expression-with-t)

IVML Language Specification

 50

Depending on the type of the collection further related operation may be defined

such as isUnique. Details will be given in Section 3 where we describe all

operations in detail.

One special case of collection operation is to aggregate one value over all values in a

collection by applying a certain expression or function. However, this comes close to

the iterate operation in OCL. As we specifically target value aggregations define the

apply operation while reusing the already known syntax:

collection-> apply(t, ResultType r = initial|

r = expression-with-t)

collection-> apply(ElementType t, ResultType r = initial|

r = expression-with-t)

This operation initializes the result “iterator” r with the initial expression and

applies the expression-with-t to each element in the collection. The result of

expression-with-t is used to update successively the result “iterator”. Finally,

the operation returns the value of r after processing the last element in

collection . Please note that the result “iterator” is always defined using a specific

type which, in turn, defines the result type of the apply operation.

Example:

/* Return the sum of all (default) bitrates of the
elements of the set “contents” */

contents-> apply(t, Integer r| r == t.bitrate);

3.2 Built-in operations

Similar to OCL, in the IVML constraint language all operations are defined on

individual IVML types and can be accessed using the “.” operator, such as

set.size() . However, this is also true for the equality, relational and

mathematical operators but they are typically given in alternative infix notation, i.e.

1 + 1 instead of 1.+(1). Further, the unary negation is typically stated as prefix

operator. Iterative collection operations such as forAll are the only9 operations in

IVML which are accessed by “->”. However, IVML also defines some specific

operations which are also listed with their defining type below.

In this section, we denote the actual type on which an individual operation is defined

as the operand of the operation (called self in OCL). The parameters of an operation

are given in parenthesis. Further, similar to the declaration of decision variables in

IVML, we use in this section the Type-first notation to describe the signatures of the

operation.

9 This is due to technical restrictions realizing IVML with Xtext.

IVML Language Specification

 51

3.3 Internal Types

3.3.1 AnyType

AnyType is the most common type in the IVML type system. All types in IVML are

subclasses of AnyType, i.e. they are type compliant and inherit the operations listed

below.

• Boolean == (AnyType a)

True if the operand is the same as a. This operation is interpreted as a value

assertion if it is used standalone (empty implication) or on the right side of an

implication. It is interpreted as an equality test if used on the left side of an

implication.

• Boolean <> (AnyType a)

True if the operand is different from a.

• Boolean != (AnyType a)

True if the operand is a different object from a. Alias for !=.

• MetaType typeOf ()

The type information of the actual type.

• Boolean isTypeOf (MetaType type)

True if the type and the actual type of operand are the same. This operation

can be seen as an alias for typeOf() == type.

• Boolean isKindOf (MetaType type)

True if type is either the direct type or one of the supertypes of the actual

type of the operand.

3.3.2 MetaType

MetaType represents the actual type of an object such as a specific user-defined

container. Currently, MetaType inherits all operations from AnyType except for the

typeOf, isTypeOf and isKindOf operations.

3.4 Basic Types

3.4.1 Real

The basic type Real represents the mathematical concept of real following the Java

range restrictions for double values. Note that Integer is a subclass of Real, so for

each parameter of type Real, you can use an integer as the actual parameter.

• Real + (Real r)

The value of the addition of self and the operand.

• Real - (Real r)

The value of the subtraction of r from the operand.

• Real * (Real r)

The value of the multiplication of the operand and r.

• Real - ()

The negative value of the operand.

• Real / (Real r)

IVML Language Specification

 52

The value of the operand divided by r. Leads to an evaluation error if r is

equal to zero.

• Real abs()

The absolute value of the operand.

• Integer floor ()

The largest integer that is less than or equal to the operand.

• Integer round()

The integer that is closest to the operand. When there are two such integers,

the largest one.

• Real max (Real r)

The maximum of the operand and r.

• Real min (Real r)

The minimum of the operand and r.

• Boolean < (Real r)

True if the operand is less than r.

• Boolean > (Real r)

True if the operand is greater than r.

• Boolean <= (Real r)

True if the operand is less than or equal to r.

• Boolean >= (Real r)

True if the operand is greater than or equal to r.

• Boolean = (Real r)

Assigns the value r to the variable operand and returns true10.

3.4.2 Integer

The standard type Integer represents the mathematical concept of integer following

the Java range restrictions for integer values. Note that Integer is a subclass of Real.

• Integer - ()

The negative value of the operand.

• Integer + (Integer i)

The value of the addition of the operand and i.

• Integer - (Integer i)

The value of the subtraction of i from the operand.

• Integer * (Integer i)

The value of the multiplication of the operand and i.

• Real / (Integer i)

The value of the operand divided by i. Leads to an evaluation error if i is equal

to zero.

• Integer abs()

The absolute value of the operand.

• Integer div (Integer i)

The number of times that i fits completely within the operand.

10 The Boolean return type is required as stand-alone constraints must be of Boolean type. The result of an

assignment operation is always true .

IVML Language Specification

 53

• Integer mod (Integer i)

The result is the operand modulo i.

• Integer max (Integer i)

The maximum of the operand and i.

• Integer min (Integer i)

The minimum of the operand and i.

• Boolean < (Integer i)

True if the operand is less than i.

• Boolean > (Integer i)

True if the operand is greater than i.

• Boolean <= (Integer i)

True if the operand is less than or equal to i.

• Boolean >= (Integer i)

True if the operand is greater than or equal to i.

• Boolean = (Integer i)

Assigns the value i to the operand and returns true
10

.

3.4.3 Boolean

The basic type Boolean represents the common true/false values.

• Boolean or (Boolean b)

True if either self or b is true.

• Boolean xor (Boolean b)

True if either self or b is true, but not both.

• Boolean and (Boolean b)

True if both b1 and b are true.

• Boolean not ()

True if self is false and vice versa.

• Boolean implies (Boolean b)

True if self is false, or if self is true and b is true. The rightmost implication is

interpreted as an assertion of the right side of the expression. Further

implications on the left side of an implication as well as implication in a

Boolean expression are just evaluated to a Boolean value.

• Boolean iff (Boolean b)

Shortcut for (a.implies(b) and b.implies(a)).

• Boolean = (Boolean b)

Assigns the value b to the operand and returns true
10

.

3.4.4 String

The standard type String represents strings, which can be ASCII.

• Integer size ()

The number of characters in the operand.

• String concat (String s)

The concatenation of the operand and s.

• String substring (Integer lower, Integer upper)

IVML Language Specification

 54

The sub-string of the operand starting at character number lower, up to and

including character number upper. Character numbers run from 0 to size().

• Boolean matches (String r)

Returns whether the operand matches the regular expression r. Regular

expressions are given in the Java regular expression notation. For example,

the following operation will check whether mail is a valid e-mail-adress:
mail. matches([\w]*@[\w]*.[\w]*);

• Boolean substitutes (String r, String s)

Replaces all occurrences of the regular expression r in the operand by s.

Regular expressions are given in the Java regular expression notation. For

example, the following operation will substitute the occurrence of “@” with

“{at}” in an e-mail-address:
mail. substitutes(“@”, “{at}”);

• Integer toInteger ()

Converts the operand to an Integer value.

• Real toReal ()

Converts the operand to a Real value.

• Boolean = (String s)

Assigns the value s to the operand and returns true
10

.

3.5 Enumeration Types

Enumerations allow the definition of sets of named values.

3.5.1 Enum

Enums inherit all operations from AnyType and adds the following operation:

• Boolean = (Enum e)

Assigns the value e to the operand and returns true
10

.

3.5.2 OrderedEnum

In contrast to Enums, individual ordinal values for the literals in an OrderedEnum are

specified. Thus, an OrderedEnum defines a (total) ordering on its literals so that

further operations in addition to those defined for Enum are available.

• Boolean < (OrderedEnum l)

True if the operand is less than the ordinal value of the literal l.

• Boolean > (OrderedEnum l)

True if the operand is greater than the ordinal value of the literal l.

• Boolean <= (OrderedEnum l)

True if the operand is less than or equal to the ordinal value of the literal l.

• Boolean >= (OrderedEnum l)

True if the operand is greater than or equal to the ordinal value of the literal

l.

IVML Language Specification

 55

3.5.3 Constraint

The basic type Constraint represents variable constraints. In addition to the

operations provided by AnyType, the Constraint type provides the following

operations:

• Boolean = (Constraint c)

Assigns the constraint c to the operandand returns true
10

.

3.6 Collection Types

This section defines the operation of the collection types. The two IVML collections

Set and Sequence are both subtypes of the abstract collection type Collection. Each

collection type is actually a template type with one parameter. ‘T’ denotes the

parameter. A concrete collection type is created by substituting a type for the T. So a

collection of integers is referred in IVML by setOf(Integer) .

3.6.1 Collection

Collection is the abstract superclass of all collections in IVML.

• Integer size ()

The number of elements in the collection operand.

• Boolean includes (T object)

True if object is an element of operand, false otherwise.

• Boolean excludes (T object)

True if object is not an element of operand, false otherwise.

• Integer count (T object)

The number of times that object occurs in the collection operand.

• Boolean isEmpty ()

Is the operand the empty collection?

• Boolean notEmpty ()

Is the operand not the empty collection?

• Boolean isDefined()

Returns whether (a variable of) the operand is defined, i.e. that an instance

was already assigned.

• T sum()

The addition of all elements in the operand. Elements must be of a type

supporting the + operation (Integer or Real).

• T product()

The multiplication of all elements in the operand. Elements must be of a type

supporting the * operation (Integer or Real).

• T min()

The minimum of all elements in the operand. Elements must be of a type

supporting the < operation (Integer or Real).

• T max()

The minimum of all elements in the operand. Elements must be of a type

supporting the > operation (Integer or Real).

• T avg()

IVML Language Specification

 56

The average of all elements in the operand. Elements must be of a type

supporting the / operation (Integer or Real).

• Boolean forAll (Iterators | expression)

Results in true if expression evaluates to true for each element in the operand

collection.

• Boolean exists (Iterators | expression)

Results in true if expression evaluates to true for at least one element in the

operand collection.

• Boolean isUnique (Iterator | expression)

Results in true if expression evaluates to a different value for each element in

the operand collection; otherwise, result is false. isUnique may have at most

one iterator variable.

• T any (Iterator | expression)

Returns any element in the source collection for which expression evaluates

to true. If there is more than one element for which expression is true, one of

them is returned. any may have at most one iterator variable.

• Boolean one (Iterator | expression)

Results in true if there is exactly one element in the operand collection for

which expression is true. one may have at most one iterator variable.

• Collection<T> collect (Iterator | expression)

The Collection of elements that results from applying expression to every

member of the source set. collect may have at most one iterator variable.

• Collection<T> select (Iterator | expression)

The sub-collection for which expression is true. select may have at most one

iterator variable.

• Boolean reject (Iterator | expression)

The sub-collection for which expression is false. reject may have at most one

iterator variable.

• <R> apply (Iterator, R result | result = expression)

Applies the given expression to the operand collection using the specified

iterator and stores the result in the last iterator (used here as a local variable

declaration) which is returned as the result of this operation. Expression shall

use the result “iterator” for aggregating values. Apply may have at most one

iterator variable and needs to specify the result “iterator”.

3.6.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set inherits

the operations from Collection.

• Boolean == (Set<T> s)

Evaluates to true if operand and s contain the same elements.

• Set<T> union (Set<T> s)

The union of operand and s.

• Set<T> intersection (Set<T> s)

The intersection of operand and s (i.e., the set of all elements that are in both

operand and s).

• Set<T> excluding (T object)

IVML Language Specification

 57

The set containing all elements of operand without object.

• Set<T> including (T object)

The set containing all elements of operand plus object.

• Set<T> asSet ()

A Set identical to operand. This operation exists for convenience reasons.

• Sequence<T> asSequence ()

A Sequence that contains all the elements from operand, in undefined order.

• Set<T> typeSelect (MetaType T)

Results the subset of elements from operand which are of type T.

• Set<T> typeReject (MetaType T)

Results the subset of elements from operand which are not of type T.

• Boolean = (Set<T> s)

Assigns the value s to the operand and returns true
10

.

3.6.3 Sequence

A sequence is a collection where the elements are ordered. An element may be part

of a sequence more than once. Sequence inherits the operations from Collection.

• Boolean == (Sequence<T> s)

Evaluates to true if operand and s contain the same elements.

• Sequence<T> union (Sequence<T> s)

The union of operand and s.

• Set<T> asSet ()

The Set containing all the elements from operand, with duplicates removed.

• Sequence<T> asSequence ()

The Sequence identical to the operand itself. This operation exists for

convenience reasons.

• T at (Integer i)

The i-th element of the sequence operand. Valid indices run from 0 to size()-

1.

• T [] (Integer i)

The i-th element of the sequence operand. This operation is an alias for at.

Valid indices run from 0 to size()-1.

• T first ()

The first element in operand.

• T last()

The last element in operand.

• Sequence<T> append (T object)

The sequence of elements, consisting of all elements of operand, followed by

object.

• Sequence<T> prepend(T object)

The sequence consisting of object, followed by all elements in operand.

• Sequence<T> insertAt(Integer index, T object)

The sequence consisting of operand with object inserted at position index.

Valid indices run from 0 to size()-1.

• Integer indexOf(T object)

The index of object object in the sequence operand.

IVML Language Specification

 58

• Sequence<T> typeSelect (MetaType T)

Results the subset of elements from operand which are of type T.

• Sequence<T> typeReject (MetaType T)

Results the subset of elements from operand which are not of type T.

• Boolean = (Sequence<T> s)

Assigns the value s to the operand and returns true
10

.

3.7 Compound Types

A compound type groups multiple types into a single named unit. A compound

inherits all its operations from AnyType. Access to variable declarations within a

compound are specified using “.”. Using the type name of the compound on the left

side of a “.” is a shortcut for an all-quantification on all instances of that compound.

In addition, it defines the following operation:

• Boolean isDefined()

Returns whether (a variable of) the operand is defined, i.e. that an instance

was already assigned.

• Boolean = (Compund c)

Assigns the value c to the operand and returns true
10

.

IVML Language Specification

 59

4 IVML Grammar

In this section we depict the actual grammar for IVML. The grammar is given in six

sections (basic modeling concepts, basic types and values, advanced modeling

concepts, basic constraints, advanced constraints and terminals) in terms of a

simplified xText11 grammar (close to ANTLR12 or EBNF). Simplified means, that we

omitted technical details in xText used to properly generate the underlying EMF

model as well as trailing “;” (replaced by empty lines in order to support readability).

Please note that some statement-terminating semicolons are optional in order to

support various user groups each having individual background in programming

languages.

4.1 Basic modeling concepts
VariabilityUnit:

Project*

Project:

'project' Identifier '{'

VersionStmt?

ImportStmt*

ConflictStmt*

InterfaceDeclaration*

ProjectContents

'}' ';'?

ProjectContents:

(Typedef

| VariableDeclaration

| Freeze

| Eval

| ExpressionStatement

| AttributeTo

| OpDefStatement

| AttrAssignment

)*

11 http://www.eclipse.org/Xtext/

12 http://www.antlr.org

IVML Language Specification

 60

ExpressionBlock:

 '{'

 ExpressionStatement+

 '}' ';'?

Typedef:

 TypedefEnum

 | TypedefCompound

 | TypedefMapping

TypedefEnum:

'enum' Identifier

'{'

TypedefEnumLiteral (',' TypedefEnumLiteral)*

'}'

TypedefConstraint?

TypedefEnumLiteral:

Identifier ('=' NumValue)?

TypedefCompound:

'compound' Identifier ('refines' Identifier)?

'{'

(VariableDeclaration

| ExpressionStatement

| AttrAssignment)*

'}' ';'?

TypedefMapping:

'typedef' Identifier Type TypedefConstraint? ';'

TypedefConstraint:

'with' '('Expression (',' Expression)* ')'

VariableDeclaration:

Type VariableDeclarationPart (',' VariableDeclarati onPart)* ';'

VariableDeclarationPart:

Identifier ('=' Expression)?

IVML Language Specification

 61

DerivedType:

(

'setOf'

| 'sequenceOf'

| 'refTo'

)

'(' Type ')'

4.2 Basic types and values

BasicType:

'Integer'

| 'Real'

| 'Boolean'

| 'String'

| 'Constraint'

Type:

BasicType

| QualifiedName

| DerivedType

NumValue:

NUMBER

QualifiedName:

(Identifier '::' (Identifier '::')*)? Identifier

AccessName:

('.' Identifier)+

Value:

NumValue

| STRING

| QualifiedName

| ('true' | 'false')

| ('refby' '(' Identifier ')')

IVML Language Specification

 62

4.3 Advanced modeling concepts

AttributeTo :

'attribute' Type VariableDeclarationPart 'to' Ident ifier

(',' Identifier)*';'

AttrAssignment:

 'assign'

 '(' AttrAssignmentPart (',' AttrAssignmentPart) * ')' 'to'

 '{'

 (VariableDeclaration | ExpressionStatement | AttrAssignment)+

 '}' ';'?

AttrAssignmentPart:

 Identifier '=' LogicalExpression

Freeze:

'freeze' '{'

FreezeStatement+

'}' ('but' FreezeButList)? ';'?

FreezeStatement:

QualifiedName AccessName? ';'

FreezeButList:

'(' FreezeButExpression (',' FreezeButExpression)* ')'

FreezeButExpression:

QualifiedName AccessName? '*'?

Eval:

'eval' ExpressionBlock

InterfaceDeclaration:

'interface' Identifier '{'

Export*

'}' ';'?

Export:

'export' Identifier (',' Identifier)* ';'

IVML Language Specification

 63

ImportStmt:

'import' Identifier ('::' Identifier)?

(

'with' '(' VersionedId (',' VersionedId)*')'

)? ';'

ConflictStmt:

'conflicts' Identifier

(

'with' '(' VersionedId (',' VersionedId)* ')'

)? ';'

VersionedId:

Identifier '.version' VersionOperator VERSION

VersionOperator:

'==' | '>' | '<' | '>=' | '<=' | '<>' | '!='

VersionStmt:

'version' VERSION ';'

DslContext:

'DSL' '(' STRING ',' STRING ',' STRING ')'

DSL_CONTENT

4.4 Basic constraints

ExpressionStatement:

Expression ';'

Expression:

LetExpression

| ImplicationExpression

| CollectionInitializer

| DslContext

IVML Language Specification

 64

ImplicationExpression:

AssignmentExpression ImplicationExpressionPart*

ImplicationExpressionPart:

ImplicationOperator AssignmentExpression

ImplicationOperator:

'implies' | 'iff'

AssignmentExpression:

 LogicalExpression AssignmentExpressionPart?

AssignmentExpressionPart:

 '=' (LogicalExpression | CollectionInitializer)

LogicalExpression:

EqualityExpression LogicalExpressionPart*

LogicalExpressionPart:

LogicalOperator EqualityExpression

LogicalOperator:

'and' | 'or' | 'xor'

EqualityExpression:

 RelationalExpression EqualityExpressionPart?

EqualityExpressionPart:

 EqualityOperator (RelationalExpression | Collec tionInitializer)

EqualityOperator:

 '==' | '<>' | '!='

RelationalExpression:

AdditiveExpression RelationalExpressionPart?

RelationalExpressionPart:

RelationalOperator AdditiveExpression

IVML Language Specification

 65

RelationalOperator:

'>' | '<' | '>=' | '<=' | '<>' | '!='

AdditiveExpression:

MultiplicativeExpression AdditiveExpressionPart*

AdditiveExpressionPart:

AdditiveOperator MultiplicativeExpression

AdditiveOperator:

'+' | '-'

MultiplicativeExpression:

UnaryExpression MultiplicativeExpressionPart?

MultiplicativeExpressionPart:

MultiplicativeOperator UnaryExpression

MultiplicativeOperator:

'*' | '/'

UnaryExpression:

UnaryOperator? PostfixExpression

UnaryOperator:

'not' | '-'

PostfixExpression:

(FeatureCall Call* ExpressionAccess?)

| PrimaryExpression

Call:

'.' FeatureCall

| '->' SetOp

| '[' Expression ']'

FeatureCall:

Identifier '(' ActualParameterList? ')'

IVML Language Specification

 66

SetOp:

Identifier

'(' Declarator Expression? ')'

Declarator:

Declaration (';' Declaration)* '|'

Declaration:

Identifier (',' Identifier)* (':' Type)? ('=' Expre ssion)?

ActualParameterList:

Expression (',' Expression)*

ExpressionAccess:

'.' Identifier Call* ExpressionAccess?

PrimaryExpression:

(

Literal

| '(' Expression ')'

| IfExpression

| 'refBy' '(' Identifier ')'

)

Call*

ExpressionAccess?

CollectionInitializer:

QualifiedName?

'{'

ExpressionList?

 '}'

ExpressionList:

ExpressionListEntry (',' ExpressionListEntry)*

ExpressionListEntry:

(Identifier ('.' Identifier)? '=')?

(LogicalExpression | LiteralCollection)

IVML Language Specification

 67

Literal:

Value

4.5 Advanced constraints

LetExpression:

'let' Type Identifier '=' Expression 'in' Expressio n

IfExpression:

'if' Expression 'then' Expression 'else' Expression 'endif'

OpDefStatement:

'def' Type Identifier '(' OpDefParameterList ')'

'=' Expression ';'

OpDefParameterList:

(OpDefParameter (',' OpDefParameter)*)?

OpDefParameter:

 Type Identifier ('=' Expression)?

4.6 Terminals

Identifier:

 ID | VERSION | EXPONENT

terminal VERSION:

'v' ('0'..'9')+ ('.' ('0'..'9')+)*

terminal ID:

('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'. .'9')*

terminal NUMBER:

'-'?

(('0'..'9')+ ('.' ('0'..'9')* EXPONENT?)?

| '.' ('0'..'9')+ EXPONENT?

| ('0'..'9')+ EXPONENT)

terminal EXPONENT:

('e'|'E') ('+'|'-')? ('0'..'9')+

IVML Language Specification

 68

terminal STRING :

'"' (

'\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\ '|'"')

)* '"'

| "'" (

'\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\ '|"'")

)* "'"

terminal DSL_CONTENT:

'%' -> 'DSL%'

terminal ML_COMMENT:

'/*' -> '*/'

terminal SL_COMMENT:

'//' !('\n'|'\r')* ('\r'? '\n')?

terminal WS:

(' '|'\t'|'\r'|'\n')+

terminal ANY_OTHER:

.

IVML Language Specification

 69

References

[1] K. Bak, K. Czarnecki, and A. Wasowski. Feature and Meta-models in Clafer:

Mixed, Specialized, and Coupled. In B. Malloy, S. Staab, and M. van den Brand,

editors, Proceedings of the 3rd International Conference on Software Language

Engineering (SLE '10), volume 6563 of Lecture Notes in Computer Science,

pages 102–122. Springer, 2010.

[2] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing TVL, a Text-

Based Feature Modelling Language. In Proceedings of the 4th International

Workshop on Variabilits Modelling of Software-Intensive Systems (VaMoS '10),

pages 159–162, 2010.

[3] E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid, editors.

Software Product Lines - 15th International Conference, SPLC 2011, Munich,

Germany, August 22-26, 2011. IEEE, 2011.

[4] Object Management Group, Inc. (OMG). Object Constraint Language.

Specification v2.00 2006-05-01, Object Management Group, May 2006.

Available online at: http://www.omg.org/docs/formal/06-05-01.pdf.

[5] Object Management Group, Inc. (OMG). Unified Modeling Language:

Superstructure version 2.1.2. Specification v2.11 2007-11-02, Object

Management Group, November 2007. Available online at:

http://www.omg.org/docs/formal/2007-11-02.pdf.

[6] Object Management Group, Inc. (OMG). Common Variability Language (CVL),

2010. OMG initial submission. Available on request.

[7] Mark-Oliver Reiser. Core Concepts of the Compositional Variability

Management Framework (CVM). Technical Report 2009/16, Technische

Universität Berlin, 2009. Available online at http://www.eecs.tu-

berlin.de/menue/forschung/forschungsberichte/.

[8] M. Rosenmüller and N. Siegmund. Automating the Configuration of Multi

Software Product Lines. In Proceedings of the 4th International Workshop on

Variability Modelling of Software-Intensive Systems (VaMoS '10), pages 123–

130, 2010.

[9] Rob van Ommering. Building Product Populations with Software Components.

PhD thesis, University of Groningen, 2004.

INDENICA
Language: Language Specification

(corres

Software Systems Engineering (SSE)

Abstract

Creating domain-specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

document we provide a novel approach for

how to implement selected

(platform) ecosystems in

instantiation process. This enable

instantiation process in a declarative way without the need for implementation of

specific tool components such as instantiators.

In this document we specify

language (VIL) for specifying

(platform) ecosystems can be

INDENICA Variability Implementation
Language: Language Specification

Version 0.7
(corresponds to VIL bundle versions 0.0.7)

Software Systems Engineering (SSE)
University of Hildesheim

31141 Hildesheim

Germany

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

provide a novel approach for variability implementation

implement selected customization and configuration options in service

in a generic way focusing on the specification of the

instantiation process. This enables domain engineers to define their specific

instantiation process in a declarative way without the need for implementation of

specific tool components such as instantiators.

In this document we specify the concepts of the INDENICA variability implementatio

for specifying how customization and configuration options in service

can be turned into (instantiated) artefacts.

Implementation
Language: Language Specification

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

variability implementation. We focus on

customization and configuration options in service

way focusing on the specification of the

s domain engineers to define their specific

instantiation process in a declarative way without the need for implementation of

implementation

customization and configuration options in service

Version

0.5

0.6

15. June 2013

8. August 2013

first version derived from D2.2.2

revised concepts

0.7 26. September 2013 revisions based on actual implementation

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction ... 7

2 The INDENICA Variability Implementation Approach ... 8

3 The VIL Languages .. 10

3.1 INDENICA Variability Build Language ... 11

3.1.1 Reserved Keywords .. 11

3.1.2 Scripts ... 12

3.1.3 Version ... 13

3.1.4 Imports ... 14

3.1.5 Types .. 15

3.1.5.1 Basic Types ... 15

3.1.5.2 Configuration Types ... 15

3.1.5.3 Artefact Types .. 16

3.1.5.4 Container Types ... 17

3.1.6 Variables ... 17

3.1.7 Externally Defined Values of Global Variables ... 18

3.1.8 Rules ... 19

3.1.8.1 Variable Declarations ... 22

3.1.8.2 Expressions ... 22

3.1.8.3 Calls .. 22

3.1.8.4 Operating System Commands ... 25

3.1.8.5 Iterated Execution .. 25

3.1.8.6 Join Expression ... 26

3.2 VIL Template Language .. 27

3.2.1 Reserved Keywords .. 27

3.2.2 Template .. 27

3.2.3 Version ... 29

3.2.4 Imports ... 29

3.2.5 Functional Extension .. 30

3.2.6 Types .. 30

3.2.7 Variables ... 30

3.2.8 Sub-Templates (defs) ... 31

3.2.8.1 Variable Declaration .. 32

VIL Language Specification

 4

3.2.8.2 Expression Statement .. 32

3.2.8.3 Alternative.. 33

3.2.8.4 Switch ... 33

3.2.8.5 Loop .. 35

3.2.8.6 Content .. 35

3.3 VIL Expression Language .. 37

3.3.1 Reserved Keywords .. 37

3.3.2 Prefix operators ... 37

3.3.3 Infix operators .. 37

3.3.4 Precedence rules .. 38

3.3.5 Datatypes ... 38

3.3.6 Type conformance ... 39

3.3.7 Side effects ... 39

3.3.8 Undefined values ... 39

3.3.9 Collection operations ... 39

3.4 Built-in operations ... 40

3.4.1 Internal Types .. 40

3.4.1.1 AnyType ... 40

3.4.1.2 Type .. 40

3.4.2 Basic Types ... 40

3.4.2.1 Real ... 41

3.4.2.2 Integer .. 41

3.4.2.3 Boolean .. 42

3.4.2.4 String .. 42

3.4.3 Container Types ... 43

3.4.3.1 Collection ... 43

3.4.3.2 Set .. 44

3.4.3.3 Sequence .. 44

3.4.3.4 Map .. 44

3.4.4 Configuration Types ... 45

3.4.4.1 IvmlElement ... 45

3.4.4.2 EnumValue ... 46

3.4.4.3 DecisionVariable .. 46

VIL Language Specification

 5

3.4.4.4 Attribute ... 46

3.4.4.5 IvmlDeclaration .. 46

3.4.4.6 Configuration ... 46

3.4.5 Built-in Artefact Types and Artefact-related Types 47

3.4.5.1 Path .. 47

3.4.5.2 JavaPath ... 48

3.4.5.3 Project .. 48

3.4.5.4 Text ... 49

3.4.5.5 Binary ... 49

3.4.5.6 Artifact ... 49

3.4.5.7 FileSystemArtifact .. 50

3.4.5.8 FolderArtifact ... 50

3.4.5.9 FileArtifact .. 50

3.4.5.10 VtlFileArtifact ... 51

3.4.5.11 XmlFileArtifact .. 51

3.4.6 Built-in Instantiators .. 52

3.4.6.1 VIL Template Processor.. 52

3.4.6.2 Blackbox Instantiators .. 53

4 VIL Grammars ... 54

4.1 VIL Build Language Grammar ... 54

4.2 VIL Template Language Grammar ... 56

4.3 Common Expression Language Grammar .. 57

References ... 63

VIL Language Specification

 6

Table of Figures

Figure 1: Overview of the VIL type system .. 38

VIL Language Specification

 7

1 Introduction

This document specifies the INDENICA variability implementation language (VIL) in

terms of a living document, which describes the most current version of the

language based on discussions with the partners and experiences made during the

project.

VIL consists two languages: a build process description language and a template

language. The focus of the VIL build language is on instantiating a whole service

platform in terms of a software product line, while the template language focuses on

the instantiation and creation of individual artefacts. Both VIL languages are based

on an explicit and extensible artefact model as well as a tight integration with the

INDENICA variability modelling language IVML [3].

The remainder of this language specification is structured as follows: in Section 2, we

will briefly introduce the VIL approach. In Section 3, we will define the syntax and

semantics of the aforementioned VIL languages, their common expression language

as well as the underlying type system (including the artefact model and the IVML

integration). Finally, in Section 4, we will provide the grammars of the VIL languages

as a reference.

VIL Language Specification

 8

2 The INDENICA Variability Implementation Approach

In this section, we describe the concepts of the INDENICA Variability Implementation

Language (VIL). VIL is designed to realize the instantiation of artefacts in a generic

way, i.e., using a specification-based approach instead of relying on domain- or

product-line-specific implemented instantiation mechanisms. A more detailed

discussion of the approach idea and its benefits for product line engineering can be

found in D2.2.2 [5].

The VIL is more than a single language. It consists of two languages and requires the

understanding of additional core concepts:

• Artefact meta-model: Everything that can be instantiated (transformed or

generated) is regarded as an artefact. The VIL approach relies on an artefact

meta-model as its foundation. The artefact meta-model (or often artefact

model for short) describes what operations can be performed on certain

types of artefacts, such as Java source code, Java byte code, XML files but

also components (for runtime variabilities), or elements of the file system

such as files or folders. Production strategies are operations on the types of

the input and output artefacts using the capabilities of the assets for

specifying the instantiation.

• VIL template language is used to instantiate a certain type of target artefact

in a reusable way. Basically, the VIL template language covers generation as

well as transformation-based production strategies.

• Blackbox instantiators: In some situations it might be difficult, inconvenient,

or even impossible to describe a production strategy using the VIL template

language. One example is the Cocktail instantiator discussed in Deliverable

D2.2.2 [5] as it mainly modifies Java bytecode and, thus, it is easier to realize

(at least some part of it) in an usual programming language such as Java, i.e.,

from the point of view of VIL as a black box. Another example is a

programming language compiler or a linker, which should not be re-

developed using VIL but simply reused. In case of legacy product lines, an

existing instantiator may be called or wrapped into a VIL extension.

• VIL build language: This is the main part of the VIL language as it binds all

other pieces together. This is used to define individual production strategies,

i.e., to relate artefacts and instantiation mechanisms, to combine production

strategies in terms of rules and to specify the execution of the rules. Basically,

it is a rule-based programming language as a foundation for describing

product line instantiation processes.

VIL and its sublanguages are tightly integrated with IVML, i.e., IVML identifiers and

configuration values can be directly used in VIL. From a more general point of view,

VIL and its sublanguages rely on existing, practically proven concepts such as build

rules or template languages in order to avoid reinventing the wheel. However,

existing concepts as well as related tooling does not provide the full support for

variability instantiation as we experienced in our analysis of related technologies.

VIL Language Specification

 9

Thus, we reuse and extend existing concepts to apply it to variability realization and

created the VIL as a completely new language along with a novel implementation.

VIL Language Specification

 10

3 The VIL Languages

In this section, we will describe the two (sub) languages of VIL, i.e., the VIL build

language and the VIL template language, as well as their main concepts. Due to the

nature of both languages as variability implementation languages, they share a

common type system as well as a common expression language.

The extensible VIL type system is the foundation for both VIL sub languages. The

type system consists of basic types such as Integer or Boolean, configuration-related

types realizing the integration with an IVML [3] variability model, artefact-related

types implementing the artefact (meta) model, implicit types representing

instantiators and derived types such as containers. In particular, the type system is

extensible, i.e., additional or refining artefact types or instantiators can easily be

added (in terms of Java classes). If compared with an object-oriented language, the

artefact types can be considered as classes, the operations as methods, individual

artefacts as instances and the execution of artefact operations as method calls.

However, the instantiators can be more aptly compared to transformation rules as

they are first of all rule-based and second operate on the artefact model, but are

themselves not part of it. The common VIL expression language represents a wide

range of expressions from simple calculations over artefact operation and

instantiator calls up to rather complex composite expressions. The expression

language relies on the operations and operators provided by the VIL type system.

The two VIL languages are realized on top of the common expression language. Both

languages follow a textual approach to the specification of artefact and product

instantiation and support batch processing. Our definition of the syntax of the VIL

languages draws upon typical concepts used in programming languages, in particular

Java, build languages such as make, template languages such as xtend as well as

expressions inspired by IVML and the Object Constraint Language (OCL) [6]. We

adapt these concepts as needed to provide additional operations required in

variability implementation, such as the integration with a variability model or an

explicit artefact model.

We will use the following styles and elements throughout this section to illustrate

the concepts of the IVML:

• The syntax as well as the examples will be illustrated in Courier New .

• Keywords will be highlighted using bold font.

• Elements and expressions that will be substituted by concrete values,

identifiers, etc. will be highlighted using italics font.

• Identifiers will be used to define names for modelling elements that allow the

clear identification of these elements. We will define identifiers following the

conventions typically used in programming languages. Identifiers may consist

of any combination of letters and numbers, while the first character must not

be a number.

VIL Language Specification

 11

• Statements will be separated using semicolon “; ” (most other language

concepts may optionally be ended by a semicolon).

• Different types of brackets will be used to indicate lists “() ”, sets “{} ”, etc.

This is closely related to the Java programming language.

• We will indicate comments using “// ” and “/* ... */ ” (cf. Java).

We will use the following structure to describe the different concepts:

• Syntax: this is the syntax of a concept. We will use this syntax to illustrate the

valid definition of elements as well as their combination.

• Description of syntax: provides the description of the syntax and the

associated semantics. We will describe each element, the semantics and their

interaction with other elements in the model.

• Example: the concrete use of the abstract concepts is illustrated in a (simple)

example.

In Section 3.1, we will describe the specific concepts of the VIL build language which

is responsible for specifying the overall variability instantiation process of an entire

(hierarchical) product line. In Section 3.2, we will describe the concepts of the VIL

template language, which provides the means to describe the instantiation of a

single (textual) artefact. Basic concepts of the VIL build and the VIL template

language are rather similar (also to IVML) in order to simplify learning and

application of these languages. In Section 3.3, we will detail the common expression

language which is part of both, the VIL build and the VIL template language. In

particular, we will detail the type system, i.e., the built-in types, their individual

operations and the default instantiators that are part of the VIL implementation.

3.1 INDENICA Variability Build Language

In this section, we describe the concepts and language elements of the VIL build

language in detail. This language aims at specifying the variability instantiation

process of a whole (hierarchical) product line (as opposed to the instantiation of a

specific artefact type covered by the VIL template language).

However, the VIL build language focuses on the implementation and instantiation of

variabilities rather than on the entire build process of a whole system. Thus, the VIL

build language is intended as an extension to existing build languages, i.e., it shall be

integrated with those languages rather than replacing them.

3.1.1 Reserved Keywords

In the VIL build language, the following keywords are reserved and must not be used

as identifiers. Please note that this set of reserved keywords is complemented by the

keywords of the common VIL expression language given in Section 3.3.1.

• @advice
• const
• exclude
• extends
• execute

VIL Language Specification

 12

• import
• join
• load
• properties
• protected
• version
• vilScript
• with

3.1.2 Scripts

In the VIL build language a script (vilScript) is the top-level element. This element

is mandatory as it identifies the production strategies to be applied to derive an

instantiated product. The definition of a script requires a name, as a basis for

referring among VIL build scripts and a parameter list specifying the expected

information from the execution environment such as the actual configuration or the

projects to work on. In order to realize the necessary capabilities required for

implementing the hierarchical product line capabilities of the EASy producer tool, at

least the source project to instantiate from, the target project to be instantiated and

the actual variability configuration must be passed to a VIL build script.

Basically, VIL may refer to all visible configuration settings in a variability

configuration, more precisely to the actual values of frozen decision variables (and

their underlying structure). In order to make this integration explicit, these decision

variables may be directly referred in VIL by their qualified IVML name. As IVML

configurations may be partial or even dynamically composed, the actual structure of

a variability model is not necessarily known at the point in time when the VIL script is

specified. Thus, the validity of qualified IVML identifiers can only be determined at

execution time of the VIL script when also the actual configuration is known. This

may complicate the development of VIL scripts as actually unknown identifiers will at

least lead to a warning. To support the domain engineer in specifying valid build

scripts, VIL provides the advice annotation specifying the name for the IVML

models used in the VIL build scripts. Qualified names resolvable via the advice

annotation do not lead to warnings in the VIL editor. As an explicit version number

may be stated for VIL scripts (akin to IMVL models), also advices and model imports

may be version-constrained.

Optionally, a VIL script may extend another VIL script, i.e., reusing and extending

production strategies by overriding (akin to object-oriented languages).

Syntax:

//imports

@advice(ivmlName)

vilScript name (parameterList) extends name1 {

//optional version specification

//loading of variable values from an external sourc e

//variable definitions

//rule declarations

VIL Language Specification

 13

}

Description of syntax: the definition of a build script consists of the following

elements:

• First, all referenced scripts must be imported. We will detail the import

syntax in Section 3.1.4.

• Optional advices declaring the underlying variability models.

• The keyword vilScript defines that the identifier name is defined as a

new build script with contained production strategies.

• The parameter list denotes the arguments to be passed to a VIL script for

execution. When executed by EASy, at least the source project(s), the

target project, and the variability configuration must be passed in. Source

and target project may be identical in case of (traditional) in-place

instantiation. However, further parameters may be given upon an explicit

invocation from an external call, e.g., an integration with a build language

such as ANT or Maven.

• A VIL build script may optionally extend an existing (imported) VIL script.

This is expressed by extends name1, whereby name1 denotes the name

of the extending script.

• Production strategies are described within the curly brackets.

Example:

@Advice(YMS)

vilScript YMSBuild (Project source, Configuration config,

 Project target){

/* Go on with the production strategies for YMS her e */

}

Please note that the types shown above such as Project or Configuration will

be explained in detail in the next section. Further, a build script for multi-product

lines may require a container of projects (see Section 3.1.5.4), while single project

parameter is sufficient for a traditional product line build.

3.1.3 Version

Akin to IMVL, VIL build specifications may optionally be tagged with an explicit

version number in order to support product line evolution. Evolution of software

may yield updates to projects, IVML models and build scripts so that scripts of

different versions may exist and need to be clearly distinguished.

Syntax:

// Declaration of the version of a VIL build script .

version vNumber. Number;

VIL Language Specification

 14

Description of Syntax: A version statement consists of the following elements:

• The version keyword indicates a version declaration. At maximum one

version declaration may be given in a VIL build file at the very first position

within a VIL build script.

• vNumber. Number defines the actual version of the project (here only two

parts prefixed by a “v”). At least one number must be given and no

restriction holds on the amount of sub-version numbers.

• A version statement ends with a semicolon.

Example:

vilScript YMSBuild(Project source, Configuration config,

 Project target){

version v 0.1.4;

...

}

3.1.4 Imports

The production strategies for a variability instantiation build process may be defined

in a single VIL build script or may be reused from other (existing) build scripts.

Therefore, VIL build scripts may be imported. In order to support also the evolution

of product line build specifications, VIL allows the specification of version-restricted

imports. Imports make the production strategies defined in the specified build file

accessible to the importing build script.

Syntax:

// Unconstraint and constraint imports.

import name;

import name with (version op vNumber.Number) ;

Description of Syntax: An import1 of a build scripts consists of the following

elements:

• Importing a build script starts with the keyword import . Multiple imports

may be given in a VIL build file directly at the beginning of the script file.

• name (given in terms of a VIL identifier) refers to the name of the build

script to be imported. However, multiple scripts with identical names and

versions may exist in a file system, in particular in hierarchical product

lines. Thus, imports are determined according to the following hierarchical

import convention, i.e., starting at the (file) location of the importing

script (giving precedence to imports in the same file) the following

locations are considered in the given sequence: The same directory, then

1 Actually, this syntax differs from IVML due to technical reasons in xText.

VIL Language Specification

 15

contained directories (closest directories are preferred) and finally

containing directories (also here closest directories are preferred). Similar

to Java class paths, additional script paths may be considered in addition

to the immediate file hierarchy.

• An optional restriction of the import in terms of versions. This is indicated

by the keyword with followed by a parenthesis containing the

restrictions. A restriction is stated by the keyword version , a comparison

operator (==, >, <, >=, <=) and a version number. An and-clause of multiple

restrictions may be given in the parenthesis separated by commas.

• An import statement ends with a semicolon.

Example:

vilScript YMSBuild (Project source, Configuration config,

 Project target){

version v 0.1.4;

import generics with (version >= v1.12) ;

}

3.1.5 Types

Basically, the VIL build language is a statically typed language with partially

postponed type checking at runtime as we will detail below. Thus, the VIL build

language provides a set of formal types to be used in variable declarations or

parameter lists. We distinguish between basic types, configuration types, artefact

types, and container types.

3.1.5.1 Basic Types

The basic types in the VIL build language correspond to the basic types of IVML, i.e.,

Boolean (Boolean), integer (Integer), real (Real) and string (String) with their

usual meaning.

Boolean constants are given in terms of the keywords true and false. Integer

constants are stated as usual numbers not containing a “.” or an exponential

notation. Real constants must contain the floating-point separator “.” or may be

given in exponential notation. Strings are either given in quotes or in apostrophs and

may contain the usual escape sequences including those for line ends, quotes and

apostrophs.2

3.1.5.2 Configuration Types

A configuration type denotes the representation of IVML configuration elements in

VIL. However, due to the nature of VIL, we need only access to the configuration and

the structure of an IVML model rather than to all modelling capabilities. Thus, VIL

provides a specific set of built-in configuration types. The actual instance of a

2 Strings delimited by quotes may contain apostrophs, strings delimited by apostrophs may contain quotes.

VIL Language Specification

 16

configuration is passed into a VIL build script in terms of a script parameter.

Configuration types cannot be directly created in a VIL script and must not modify

the underlying IVML model.

The entry point to a configuration in terms of an IVML model is the type

Configuration . It provides access to all frozen decision variables and attributes. In

particular, Configuration allows creating projections of a given configuration in

order to simplify further processing. Further, it provides access to IVML type

declarations such as compounds or enumerations and their value. This is

represented by the IvmlElement and its subtypes. An IvmlElement represents

IVML concepts in a generic way and provides access to its (qualified) name, its

(qualified) type name and the configured value. Specific subtypes of IvmlElement

are DecisionVariable , Attribute and IvmlDeclaration , each providing with

more specific operations as we will discuss in detail in Section 3.4.4.

3.1.5.3 Artefact Types

Artefact types represent the different categories of artefacts used in the artefact

model. Some artefact types are built-in and part of the VIL implementation, while

further types can be defined in terms of an extension of the artefact model. In this

section, we will discuss only the predefined types. Please refer to the EASy

developers guide on how to define more specific artefact types (as well as how to

integrated instantiators implemented in a programming language).

The type Project is a mapping of a physical project (Eclipse) into VIL and provides

related operations such as mapping paths between the source and the target project

for instantiation.

A Path is a predefined type of the VIL artefact model although it is not an artefact by

itself. A Path represents a relative file system path and may possibly contain

wildcards. A path is specified in terms of a String in VIL and is automatically

converted into a Path or an artefact instance depending on the actual use. In more

detail, paths are specified according to the ANT [9] conventions, i.e., using the slash

as path separator and wildcards for patterns. The following wildcards are supported:

? for a single character (excluding the path separator), * for multiple characters

(excluding the path separator) and ** for (sub) path matches.

Artifact 3 is the most common artefact type and root of the VIL artefact hierarchy.

The predefined Artifact s have also predefined methods. For example, they allow

to delete the artefact (if possible at all), or to obtain access to its plain textual or

binary representation. VIL provides a set of built-in artefact types such as

FileArtifact and FolderArtifact which are both FileSystemArtifact s.

Further, VIL provides more specific artefact types such as the VtlFileArtifact

representing VIL template files (see Section 3.4.5) or the XmlFileArtifact

representing parsed XML files with a substructure of specialized fragment artefacts

such as XmlElement or XmlAttribute . Please note that artefact instances are

assigned in a polymorphic way, i.e., while a FileArtifact may be specified as type

in a VIL script, it may actually contain a more specific type.

3 We adopted US English in the implementation of VIL.

VIL Language Specification

 17

3.1.5.4 Container Types

VIL provides three container types, sequences (keyword sequenceOf), sets

(keyword setOf) and associative containers (keyword mapOf). Container types are

generic with respect to their content type(s) and, similarly to IVML, the content type

must be stated explicitly, such as sequenceOf(Integer) or

setOf(DecisionVariable, FileArtifact) .

Sequences may contain an arbitrary number of elements of a given element type

(including duplicates), while sets are similar to sequences, but do not support

duplicate elements. In sequences, elements can be accessed by their position in the

container using an index ([index]). In VIL, indexes start at zero and run until the

number of elements in the container minus one (as in Java and many other

languages). Collections typically occur as results of operations, rule, or instantiator

executions. In addition, they can be explicitly initialized using type-compatible

expressions of the appropriate dimension as shown follows

sequenceOf(Integer) someNumbers = {1, 2, 3, 4, 5};

setOf(Integer, Integer) somePairs = {{1, 2}, {3, 4} };

A Map represents an associative container in VIL, i.e., a container which relates a

keys to associated values. In particular, it allows retrieving the value assigned to a

key via the get operation and the [] -Operator ([key]). Basically, associative

containers are intended to simplify the translation of IVML-identifiers to

implementation-specific identifiers in individual artefacts. Therefore, VIL associative

containers can be explicitly initialized in terms of key-value-pairs using type-

compatible expressions

setOf(String, String) idTranslation

 = {{”nrOfProcessors”, ”procCnt”}, {”nrOfNodes”, ” nodeCnt”}};

VIL supports a set of operations specific for container types, e.g., excluding,

projecting, or collecting elements in a container, etc. We will introduce the full set of

operations in Section 3.4.3.

3.1.6 Variables

A variable provides name-based access to a value of a certain type (see Section

3.1.5), similar to variables in programming languages.

In VIL, the value of a variable can be modified at any time (in contrast to build

languages such as ANT [9] where a value of a property can be set only once). In

addition, a variable may be declared to be constant so that a value can be set only

once and not be modified afterwards. Variables may be of global scope, i.e., directly

defined within a VIL script or they may be local (within rules, see Section 3.1.6).

Syntax:

// Declaration of a variable.

Type variableName1;

Type variableName2 = value;

const Type constantName = value;

VIL Language Specification

 18

Description of Syntax: The declaration of variables consists of the following

elements:

• The Type defines the type of the variable being declared.

• The identifiers variableName1, variableName2 and constantName

are the names of the declared variable or constant, respectively.

• The optional keyword const indicates that a variable can be defined only

once and the value must not be redefined.

• A variable may optionally be initialized by a value or an expression, which

evaluates to a value of the given type.

• Variable declarations end by a semicolon.

Parameters of VIL build scripts are declared akin to variables, but without an initial

value.

Example:

Integer numberOfCompilerProcesses = 4;

sequenceOf(Project) sources;

sequenceOf(Project, DecisionVariable) mapping;

Variables may be referred in Strings such as path patterns. A variable reference is

stated as $variableName . Even entire VIL expressions (see Section 3.3) including

variables may be given in Strings in the form ${expression} . When applying the

respective String, variable, and expression references are substituted with their

actual value.

3.1.7 Externally Defined Values of Global Variables

Global variables or constants are defined as part of a VIL script. The value of a global

variable or constant may be specified by an external source, e.g., to customize the

build script according to the build environment (similar to properties in ANT [9]). For

externally defined values of variables, initial values are not needed, in particular also

not for constants. Externally specified values are subject to automated type

conversion and variable reference or VIL expression substitution based on the VIL

script arguments. Multiple external property files are processed in sequence so that

the variable values defined by external files listed before are overwritten (accidental

constant redefinition will lead to an execution error).

Syntax:

// Loading the values of global variables

load properties ” path”;

VIL Language Specification

 19

Description of Syntax: Loading values from an external file consists of the following

elements:

• The keywords load properties indicates that the values of global

variables shall be loaded from an external file. Multiple load statements

may be given in a VIL script directly after the version statement.

• The path points to the file containing the initial values of the variables.

Relative paths are interpreted relative to the target project of the VIL

script. The file must be given in Java properties format, i.e., each line

specifies the value of a specific variable in the following form

variableName = value

• Loading values from an external file ends by a semicolon.

Example:

load properties ”globalVariables.properties”;

3.1.8 Rules

Build rules are used in VIL to specify individual production strategies, reusable build

steps to be used within production strategies or, as the main entry point into the

build process. Akin to make [8], VIL-rules may have preconditions, which must be

fulfilled in order to enable the rule. However, VIL-rules may also explicitly define

postconditions, which guard the result of the rule execution.

VIL rules may have parameters in order to parameterize the specified variability

instantiation. These parameters must either be bound by the calling rule or, in case

of the main entry rule, by the VIL build script itself.

Preconditions may be given in terms of path-patterns, an individual artefact, an

artefact collection or rule calls. While an arbitrary number of rule calls may be given

as precondition, at most one path pattern, artefact or artefact collection may be

given as first precondition4.

• A path pattern follows the (pattern) rules of ANT path specifications already

described in Section 3.1.5.2. For example, ”$target/bin/**/*.class”

requires the existence of at least one Java bytecode file in the bin folder of

$target (assuming that $target refers to the target project). Used as a

rule precondition, a path pattern requires that the matching file artefacts

exist and are up-to-date (akin to Make rule preconditions [8] but with

extended pattern matching capabilities).

• An artefact (collection) is given in terms of a variable or a VIL expression

evaluating to exactly one artefact (collection) instance. In a precondition,

the denoted artefact(s) must exist and be up-to-date.

• A rule call (rule name with argument list) represents an explicit rule

dependency and must be executed successfully in case that the

4 Future work on VIL may relax this condition and even extend the current file path notation to more generic

artifact model path expressions also involving fragment artefacts etc.

VIL Language Specification

 20

preconditions of the stated rule are valid. The execution results of a rule call

become available as an implicit variable in the rule body under the name of

the called rule.

The optional rule postcondition is given in terms of a path pattern, an individual

artefact or an artefact collection4. Postconditions are evaluated if the preconditions

are met and the body of the rule is executed successfully. A rule completes

successfully, if also the (optional) postcondition is met.

Rules may explicitly depend on each other in terms of the rule calls described above.

Further, implicit rule dependencies are expressed via the first (non-rule call) pre- or

postcondition (akin to make rules [8]). If a path matching precondition4 for rule r0 is

not fulfilled, the VIL build language execution environment will aim at fulfilling the

precondition by (recursively) searching for rules ri with a postcondition indicating

that the successful execution rule ri contributes to the unmet precondition of rule r0.

Ultimately, the possibly contributing rules ri are executed (including their implicit

rule dependencies) and the precondition of rule r0 is checked again, and, on

fulfilment, also r0 is executed. If finally the precondition of r0 is not fulfilled, r0 is not

considered for execution.

The rule body specifies the individual steps to be executed if the preconditions are

met. A rule body may contain variable declarations, (assignment) expressions,

explicit rule calls (not relevant as preconditions), instantiator calls, execution of

system commands, or iterated execution of the previous elements. We will first

describe the syntax of rules and describe then the individual statements available for

specifying rule bodies.

If no path matching precondition is given, the rule body is executed once. If a path

matching precondition is present, one or multiple artefacts may match that

precondition and for each of these artefacts a corresponding output artefact may be

required by the postcondition (if specified). Thus, the rule body is executed

iteratively over all matching precondition artefacts. In order to address the actual

artefact to be processed as well as its expected resulting artefact, the implicit

variables LHS (in case of a matching precondition) and RHS (in case of a matching

postcondition) will be made available to the loop body.

All rules return implicitly their execution results consisting of two sequences,

• result containing the immediately modified artefacts by that particular

rule.

• allResults containing the modified artefacts by all dependent rule calls.

Further, the artefacts modified by executed rules are be successively collected in the

implicit global collection variable OTHERPROJECTS.

VIL Language Specification

 21

Syntax:

protected name (parameterList) = postcondition :
 preconditions { // LHS/RHS may be available

//variable declarations

//rule, instantiator, artifact or system calls

//iterated execution

}

Description of Syntax: A rule declaration consists of the following elements:

• The optional keyword protected prevents that this rule is visible from

outside so that such rules cannot be used as an entry point (for example,

in ANT [9] this is expressed by a target name starting with the minus

character). This does not affect the internal accessibility of rules via

imports and rule call.

• The name allows identifying the rule for explicit rule calls or for script

extension.

• The parameterList specifies explicit parameters which may be used as

arguments for precondition rule calls as well as within the rule body.

Parameters are given in terms of types and parameter names separated by

commas if more than two parameters are listed. Parameter must either be

bound by the calling rule or, in case of the main entry rule, by the VIL build

script itself (via identical names and assignable values in both, the

template and the main sub-template).

• The first three parts may be omitted in case of anonymous rules which are

only executed due to implicit dependencies and not available to explicit

rule calls.

• The optional postcondition specifies the expected outcome of the rule

execution. A postcondition may be a path match, an artefact or an artefact

collection. In case of a path match, the implicit variable RHS will be made

available to the rule body.

• The optional preconditions specify whether the rule is considered for

execution. The first precondition (made available as implicit variable LHS

to the rule body) may be a path match, an artefact or an artefact

collection. The following preconditions may be explicit rule calls. The

execution results of the preconditions will be made available to the rule

body in terms of implicit variables with names of the called rules and the

rule return type described above.

• The rule body is specified within the following curly brackets.

VIL Language Specification

 22

Example:

produceGenericCopy(FileArtifact x, FileArtifact y) = y : x
{
 x.copy(y);
}

compileGoal() = "$target/bin/*.class" : "$source/*. java"
{
 javac(RHS, LHS);
}

The rule body specifies the individual steps to be performed in order to fulfil the rule

postcondition (if stated). A rule body may contain variable declarations, (assignment)

expressions, explicit rule calls, instantiator calls, execution of system commands or

iterated execution of these elements. The statements (ended by a semicolon or a

statement block) given in a rule body are executed in the given sequence. We will

discuss these individual elements in the following subsections.

3.1.8.1 Variable Declarations

A variable declaration within a rule body introduces a local variable shadowing rule

parameters or global variables. This is in particular true for variables, which are

defined within nested blocks. Basically, a variable declaration within a rule body

follows the same syntax as global variable declarations discussed in Section 3.1.6.

3.1.8.2 Expressions

Expressions such as value calculations or execution of artefact operations may be

used within a rule body as a guard expression or as a variable assignment. Please

note that we will detail the VIL expression language in Section 3.3, as the expression

language is common to both, the VIL build language and the VIL template language.

• Guard expressions constrain the execution of the remaining statements in a

rule body, i.e., the expression must be evaluated successfully in order to

continue the execution of the rule.

• In a variable assignment, the expression on the right hand side of the

assignment operator “=” must be evaluated successfully in order to assign the

evaluation result of the right side to the variable specified on the left side.

3.1.8.3 Calls

A call leads to the execution of another build language rule, an instantiator or an

artefact operation. We will discuss three types of calls in this section, as they are

represented by the same syntax. However, the most extreme call of a (blackbox)

instantiator, namely the execution of an operating system command (including

operating system scripts) follows a slightly different syntax. We will discuss operating

system commands in Section 3.1.8.4.

The syntax of rule calls, instantiators or artefact operations looks as follows:

operationName(argumentList)

VIL Language Specification

 23

whereby arguments are expressions separated by commas. Calls may return values

of different type.

Rule Calls

An explicit rule call is stated in terms of the name of the rule and the arguments

matching the parameter list of the target rule. A rule call leads to the execution of a

build language rule defined in the same script, one of the extended scripts or an

imported script. As rules with the same signature consisting of name and parameter

list are shadowed by the extension, rules in extended scripts may explicitly be called

by

super. operationName(argumentList)

Instantiator Calls

Basically, the VIL build language aims at defining the production flow for

instantiating generic artefacts for a software product line. In contrast, the VIL

template language aims at specifying the individual actions to instantiate an

individual (generic) artefact. Further instantiators may be given in terms of

(wrapping) Java classes in order to make programming language compilers, linkers,

or legacy instantiators available. Such instantiators may provide information about

their execution, in particular the created artefacts.

In the VIL build language, all these types of instantiators are mapped transparently

to one kind of statement, the instantiator call:

operationName(argumentList)

Basically, an instantiator call looks similar to a rule call, i.e., a name with a parameter

list, but it (typically) returns a collection of artefacts (or even nothing in case of

wrapped blackbox instantiators). Instantiators may be rather generic (such as the

built-in instantiator for the VIL template language) and may offer to pass an arbitrary

number of arguments (e.g., those defined by a VIL template. Therefore, depending

on the instantiator, named arguments (parameterName = valueExpression)

may pass arbitrary VIL instances to an instantiator in a generic way.

We will detail the built-in instantiators in Section 3.4.6. Please refer to the developer

documentation of EASy-Producer for obtaining information on how to realize an

instantiator.

Artefact Operation Calls

Artefact operations provide information on an individual artefact, its fragments or

even enable the manipulation of artefacts. Basically, an artefact operation is

executed on a variable or expression, which evaluates to an artefact type. An

artefact operation can be expressed (akin to IVML and OCL) in two different ways,

using the artefact as first argument

operationName(artefact, argumentList)

or in object-oriented style

artefact. operationName(argumentList)

VIL Language Specification

 24

Basically, a String can be automatically converted into a Path or an Artifact .

Similarly, a Path can be transparently converted into an Artifact . However, in

some cases, also an explicit creation of an artefact of a certain type may be required.

Typically, the individual artefact types support the following constructors

new ArtefactType(String)

for obtaining a specific artefact specified by its path. Please note that artefacts are

associated with creation rules detailed in Section 3.4.5. Basically, file artefacts

(regardless of whether they physically exist or only the path is known) are

polymorphically determined according to their file name extension, e.g., a file with

extension xml is considered to be a XmlFileArtifact . Further, content-specific

rules may apply depending on the specific artefact type. If no such rule applies, a

basic FileArtifact is created as the default fallback. Thus, the underlying

mechanisms of the VIL artefact model will check whether the creation of that

instance (regardless of whether the underlying file exists or not) is actually possible

or not. If the creation fails, also the containing rule will fail. The constructor

new ArtefactType()

allows to obtain a temporary artefact. Unless not renamed, this artefact will be

automatically deleted after terminating the execution of the VIL script.

The modifications to a VIL artefact instance will automatically be synchronized with

the underlying artefact upon the end of the lifetime of the related variable, e.g.,

when the execution of the containing scope of a local variable ends.

We will detail the built-in artefact operations in Section 3.4.5. Please refer to the

developer documentation of EASy-Producer for obtaining information on how to

realize own artefact types and related operations.

Operation Resolution

While determining the applicable rules, instantiators, or artefact operations, the VIL

type system considers in the following sequence

(1) Exact match of argument types and parameter types.

(2) Assignment compatible argument types and parameters.

(3) Implicit conversions specified as part of the implementation of VIL types and

artefacts, e.g., the implicit conversion of a String to a Path or a String to

an Artifact . Details on the type system and the available conversions will

be discussed in Section 3.3.

The operation types discussed in this section will be resolved according to the

sequence below:

(1) Rule calls

(2) Instantiator calls

(3) Artefact, configuration type, and basic type operations

Further, the VIL runtime environment performs dynamic dispatch, i.e., the operation

determined and bound at script parsing time will be reconsidered with respect to the

actual types of parameters and the best matching operation will dynamically be

VIL Language Specification

 25

determined (similar to dynamic dispatch in Xtend [2]). This avoids the need for

explicit type checking or large alternative decision blocks.

3.1.8.4 Operating System Commands

The VIL build language is also able to execute the most basic form of a blackbox

instantiator, namely operating systems calls or scripts. However, the syntax for

system calls differs slightly from the other call types discussed in Section 3.1.8.3 as

operating system commands may require explicit path specifications.

execute identifier(argumentList)

whereby identifier must denote a variable which evaluates to a String or a

Path . This enables that operating system calls can be composed at script execution

time or determined using external values (see Section 3.1.7). However, the related

command or script is executed, but the created artefacts are not tracked by the VIL

execution environment.

3.1.8.5 Iterated Execution

Finally, all statements available in a rule body may explicitly be executed in iterative

fashion, e.g., to apply a sequence of instantiator calls explicitly to a container of

artefacts. Therefore, the VIL build language offers a dedicated loop statement.

However, this statement called map in the VIL build language is different from typical

programming language loops as it collects the result of its execution in terms of

modified artefacts (similar to a rule).

Syntax:

map(names = expression) {

//variable declarations

//rule, instantiator, artefact or system calls

//iterated execution

}

Description of Syntax: An iterated execution consists of the following elements:

• The keyword map followed by parenthesis defining the iterator variables.

• The names denoting the names of the variables used by the map

expression iterate. The number, type and the contents of the iterator

variables are implicitly defined by the related expression . Typically, the

expression will lead to a container with one parameter type so that map

will iterate over that collection using exactly one variable of the element

type of the container. However, as we will discuss in Section 3.1.8.6, the

join expression may return a multi-dimensional container, which then

needs multiple iterator variables.

• The map consists of a block determining the statements to be executed in

for an individual iteration. The names denoting the iterator variables shall

be used within the block.

VIL Language Specification

 26

Example:

map(d : config.variables()) {
 // operate on the iterator variable d of type
 // DecisionVariable (see Section 3.4.4.6)
}

3.1.8.6 Join Expression

One specific expression in the VIL build language is particularly intended to be used

with the map iteration statement, namely the join operation. However, as join is

an expression, it may be used as an usual expression, e.g., on the right hand side of a

value assignment to a variable.

This operation is inspired by database joins, e.g., as usual in SQL. The join operation

allows combining containers of different VIL types, in particular elements from the

variability configuration with source or target artefacts. Depending on type of the

specified expression types, the join operation returns a typed sequence containing

the results.

Syntax:

join(name1:expression1, name2:expression2) with (expression)

Description of Syntax: A VIL join expression consists of the following elements:

• The keyword join followed by one parenthesis defines the containers to

be joined and the related iterator variables (name1, name2).

• name1, name2 denote variables used by the join expression iterate over

the containers given in expression1 and expression2. Without further

restriction, the result will be a collection of pairs on the types

parameterized by the types of expression1 and expression2. The

keyword exclude used before one of the names leads to a left- or right-

sided join, thus restricting number of parameters of the resulting

collection to one.

• The third expression specifies the join condition, i.e., an expression

involving name1 and name2 to select the relevant results from the cross

product of name1 and name2, and to effectively reduce the size of the

result.

Example:

// work on those decisions and artifacts where a ce rtain
// string composed from the decision name occurs in the
// artifact (and may be substituted by an instantia tor)
map(d, a :
 join(d:config.variables(), a:”$source/src/**/*.java”)
 with (a.text().matches(”${” + d.name() + ”}”)) {
 // operate on decision variable d and
 // related artifact a
}

VIL Language Specification

 27

3.2 VIL Template Language

In this section, we describe the concepts and language elements of the VIL template

language in detail. In contrast to the VIL build language, which aims at specifying the

instantiation of all artefacts of a product line, the VIL template language aims at

specifying the instantiation of a single artefact.

3.2.1 Reserved Keywords

In the VIL template language, the following keywords are reserved and must not be

used as identifiers. Please note that this set of reserved keywords is complemented

by those of the common VIL expression language given in Section 3.3.1.

• @advice
• @indent
• const
• def
• default
• else
• extends
• extension
• for
• if
• import
• print
• switch
• template
• version
• with

3.2.2 Template

The template (template) is the top-level structure in the VIL template language.

This element is mandatory as it defines the frame for specifying how to instantiate a

certain artefact. Please note that exactly one template must be given in a VIL

template file.

The definition of a template requires a name, which acts for referring among VIL

templates and a parameter list specifying the expected information from the calling

VIL build script such as the actual configuration and the target artefact (fragment).

Please note that these two arguments must be provided to all VIL template scripts.

Basically, VIL may refer to all visible configuration settings in a variability

configuration, more precisely to those actual values of decision variables (and their

underlying structure), which are frozen. In order to make this integration explicit,

these decision variables may be directly referenced in the VIL template language by

their qualified IVML name. As IVML configurations may be partial or even

dynamically composed, the actual structure of a variability model is not necessarily

known at the point in time when the VIL script is specified. Thus, the validity of

qualified IVML identifiers can only be determined at execution time of the VIL script

when also the actual configuration is known. To support the domain engineer in

VIL Language Specification

 28

specifying valid templates, also the VIL template language provides the advice

annotation (see also Section 3.1.2).

Optionally, a VIL template may extend another VIL template, i.e., reusing and

extending production strategies by overriding (akin to object-oriented languages).

The VIL template language particularly aims at supporting generative and

manipulative instantiation of generic artefacts. Therefore, the VIL template language

provides capabilities for easily specifying and generating contents. However, as usual

in software development, also VIL templates shall be formatted properly. In order to

distinguish between intended formatting and whitespaces that shall not occur in the

target artefact (fragment), the VIL template language is able to take the actual

indentation into account (as specified in the indent annotation). Taking the

formatting of the templates into account avoids postprocessing of the results, e.g.,

by formatting mechanisms [2]. We will discuss the indentation processing of the VIL

template language as part of the content statements in Section 3.2.8.6.

Akin to programming languages, VIL templates may contain (global) variable

declarations as well as sub-templates (similar to methods in object-oriented

programming languages or functions in the structured programming paradigm).

Syntax:

//imports

//functional extensions

@advice(ivmlProjectName)

@indent(indentationSpec)

template name (parameterList) extends name1 {

//optional version specification

//variable definitions

//sub-template declarations

}

Description of syntax: The definition of a VIL template consists of the following

elements:

• Optionally, imported templates or functional extensions by Java classes

are listed first.

• Optional advices declaring the underlying variability models. This

annotation is similar to VIL (see Section 3.1.2).

• An optional indentation annotation enabling the VIL template execution to

take the actual indentation into account when processing content

statements. We will detail the use of the indentation annotation in Section

3.2.8.6 along with the content statement, which actually considers

indentation information.

• The keyword template defines that the following identifier name defines

a new artefact instantiation template.

VIL Language Specification

 29

• The parameter list denotes the arguments a VIL template requires when

being executed. Basically, a VIL-template receives the underlying variability

configuration and the target artefact as parameters5. The arguments are

subject to dynamic dispatch, i.e., either the most generic type Artifact

may be used for the target artefact or a more specific type can be used. In

the latter case, the instantiator statement in the VIL build script must also

pass in a type-compliant artefact instance. Additional parameters may be

defined which then must be stated in the calling VIL build script as named

arguments.

• A VIL template may optionally extend an existing (imported) VIL template.

This is expressed by extends name1, whereby name1 denotes the name

of the extending script.

• The optional version specification, variable declarations and sub-templates

are then stated within the curly brackets.

Example:

@advice(YMS)

template DbCreator (Configuration config,

 Artifact target){

/* Go on with description of the artefact instantia tion
starting with a main sub-template and possibly furt her
(imported) sub-templates */

}

3.2.3 Version

Akin to IMVL and the VIL build language, also the VIL template language can be

tagged with an explicit version number in order to support evolution. The syntax for

the version declaration is identical to the VIL build language as discussed in Section

3.1.3.

3.2.4 Imports

The description of the instantiation of a certain artefact type may be defined in a

single VIL template (possibly including sub-templates) or may be composed from

reusable sub-templates specified in other (existing) build scripts. Therefore, VIL

templates may be imported. In order to support also the evolution of product line

build specifications, also the VIL template language allows the specification of

version-restricted imports. Imports make the sub-templates defined in the specified

build file accessible to the importing template. The syntax of imports in VIL

templates is identical to imports in the VIL build language as discussed in Section

3.1.4.

5 Due to the current implementation, the configuration parameter must be named “config” and the target

artefact “target”.

VIL Language Specification

 30

3.2.5 Functional Extension

Sometimes, it is necessary to realize specific supporting functions such as

calculations in terms of a programming language rather than in the template

language itself. Therefore, similar to Xtend [2], the VIL template language enables

external functions in terms of static Java methods, to call these methods from the

template language and to use the results in VIL templates. Basically, the realizing

classes are declared in VIL as extension and containing static methods are made

available as they would be VIL operations. However, methods with already known

signatures will not be redefined.

Syntax:

extension name;

Description of Syntax: A functional extension in the VIL template language consists

of the following elements:

• The keyword extension followed by a qualified Java name denoting the

class to be considered. The referred class must be available to VIL through

class loading. Contained static methods will be considered as extension

methods for the VIL template language. Please note that the implementing

method shall use only primitive Java types or (the implementation classes

of the) VIL types discussed in Section 3.3.

• An extension declaration ends with a semicolon.

Example:

extension java.lang.System;

3.2.6 Types

Basically, the VIL template language is a statically typed language with some

convenience in terms of postponed type checking at runtime akin to the VIL build

language. Thus, the VIL template language provides a set of formal types available

for variable declarations or parameter lists. VIL template language and VIL build

language rely on the same type system and, thus, the VIL template language

provides the same types as discussed in Section 3.1.5.

3.2.7 Variables

A variable provides named access to a value of a certain type similar to variables in

programming languages. The semantic of variables as well as the syntax for declaring

and using them in the VIL template language is identical to the VIL build language as

discussed in Section 3.1.6 (except for the capability of defining variable values in an

external file which is not available in the VIL template language).

Similar to the VIL build language, variables may be referred in Strings such as paths

or content statements. A variable reference looks like $variableName . Even entire

VIL expressions (see Section 3.3) including variables may be given in the form

VIL Language Specification

 31

${expression} . When applying the respective element, variable and expression

references are substituted by their actual value.

3.2.8 Sub-Templates (defs)

The actual instantiation of an artefact is given in terms of sub-templates (called def

in the concrete syntax), i.e., named functional units with parameters and return

types. One specific sub-template (usually called main) acts as the entry point into

artefact instantation. Akin to the VIL build language, it receives the parameters of

the containing template as arguments.

The body of a sub-template specifies the individual steps to be executed for realizing

the instantiation. Such a body may contain variable declarations, (assignment)

expressions, alternatives, switch-case-statements, loops and content statements (for

producing the actual content). We will first describe the syntax of templates and

discuss then the statements available in sub-template bodies.

Syntax:

def name (parameterList) {

//variable declarations

//alternative, switch-case, loop

//content statements

}

def Type name (parameterList) {

//variable declarations

//alternative, switch-case, loop

//content statements

}

Description of Syntax: A sub-template declaration consists of the following

elements:

• The keyword def indicates the definition of a sub-template.

• By default, the VIL template language aims at inferring the return type of a

sub-template from the rule body. In the extreme case, individual

statements may produce a rather generic value of type AnyType , which

enables the use of the value without type checking at template parsing

time and type checking at runtime. However, in some situations the

template developer may explicitly want to do strict type checking at

template parsing time. This is enabled by specifying the optional return

type for a sub-template.

• The name allows identifying the sub-template for calls, template

extension or as main entry point.

• The parameterList specifies the parameters of a sub-template in

order to parameterize the instantiation operations subsumed by the

VIL Language Specification

 32

respective sub-template. Parameters are given in terms of types and

parameter names separated by commas if more than two parameters are

listed. Parameters must either be bound by the calling sub-template or, in

case of the main entry rule, by the VIL template itself (via identical names

and assignable types, the template and the main sub-template).

• The rule body is specified within the following curly brackets.

Example:

def main(Configuration config, Artifact target) {
 // define artifact instantiation
}

def String valueMapping (DecisionVariable var) {
 // map the value of var to a String
 // explicit type checking is enforced
}

The sub-template body specifies the individual steps needed to instantiate an

artefact. Such a rule body may contain variable declarations, (assignment)

expressions, alternatives, switch-case-statements, loops and content statements (for

producing the actual content). The statements (ended by a semicolon or a statement

block) given in a sub-template body are executed in the given sequence. We will

discuss these individual statement types in the following subsections.

The last statement executed in a sub-template body implicitly determines the return

value of a sub-template.

3.2.8.1 Variable Declaration

A variable declaration within a rule body introduces a local variable shadowing rule

parameters or global variables. This is in particular true for variables, which are

defined within statement-blocks such as loops or alternatives. Basically, a variable

declaration within a sub-template body follows the same syntax as global variable

declarations discussed in Section 3.2.7.

3.2.8.2 Expression Statement

Expressions such as value calculations or execution of artefact operations may be

used within a sub-template body as a guard expression or as a variable assignment.

Please note that we will detail the VIL expression language in Section 3.3, as the

expression language is common to both, the VIL build language and the VIL template

language. Thus, guard expressions and variable assignments as discussed in Section

3.1.8.2 are similarly available in the VIL template language. Further, similar call types

as well as their (resolution) semantic as discussed in Section 3.1.8.3 are available in

the VIL template language (of course, rule calls are replaced by template calls and

operating system calls by calls to functional extensions). Template calls may be

recursive. In the VIL template language, the resolution sequence is

1) Template calls

2) Artefact, configuration type and basic type operations

VIL Language Specification

 33

3) Functional extension calls

3.2.8.3 Alternative

In the VIL template language, alternatives allow choosing among different ways of

instantiating an artifact, i.e., upon evaluating a condition the appropriate alternative

to execute is determined.

The (return) type of an alternative is either the common type of all alternatives or

AnyType . The return value of an alternative is determined by the last statement

executed in the alternative selected by the (condition) expression.

Syntax:

if (expression) ifStatement

if (expression) ifStatement else thenStatement

Description of Syntax: An alternative statement consists of the following elements:

• The keyword if indicates the beginning of an alternative statement.

• The expression given in parenthesis determines whether the if-part

(condition is evaluated to true) or the else-part (condition is evaluated to

false) is executed. In particular, if the expression cannot be evaluated,

evaluation will terminate the evaluation of the sub-template block before

evaluating the alternatives.

• The ifStatement (or statement block enclosed in curly braces) is being

executed when the expression is evaluated to true. A single statement

must be terminated by a semicolon.

• The else part is optional, i.e., if else is used in an alternative, a following

thenStatement is required. As usual, a dangling else is bound to the

innermost alternative.

• The thenStatement (or statement block enclosed in curly braces) is

executed if the expression is evaluated to false. Again, a single

statement must be terminated by a semicolon.

Example:

if (config.variables().size() > 0) {
 // work on config
} else {
 // produce an empty artefact
}

3.2.8.4 Switch

The switch statement in the VIL template language is for (dynamically) mapping

configuration elements to artefact elements rather than for influencing the control

flow (as it is the case for the alternative statement). However, in case of larger

mappings with (more or less) static content, we suggest using a map variable (see

Section 3.1.5.4).

VIL Language Specification

 34

The (return) type of an alternative is either the common type of all cases or

AnyType . The return value of an alternative is determined by the last statement

executed in the alternative selected by the (condition) expression.

Syntax:

switch (expression) {

 expression1 : expression2,

 expression3 : expression4

}

switch (expression) {

 expression1 : expression2,

 default : expression5

}

switch (expression) {

 expression1 : expression2,

 expression3 : expression4,

 default : expression5

}

Description of Syntax: An alternative statement consists of the following elements:

• The keyword switch indicates the beginning of a switch statement. It is

followed by an expression to switch over and the individual cases in a

block of curly brackets.

• A case consists of an expression (expression1 or expression3 above)

to be matched against expression. If an individual match succeeds, the

related value expression will be evaluated and determines the (result)

value of the switch statement. The implicit variable VALUE may be used

within the value expression in order to refer to the evaluated value of

expression.

• Optionally, a default case can be given which is considered if none of the

previous cases matches. In that case, the expression stated behind the

default will be evaluated and determines the (result) value of the switch

statement.

Example:

switch (var.name()) {
 ”forkNumber” : VALUE + var.intValue() – 1,
 ”cpuNumber” : var.stringValue()
 //go on with further cases and a default value
 //if required
}

VIL Language Specification

 35

3.2.8.5 Loop

The for-statement in VIL enables the defined repetition of statements. Basically, it is

rather similar to an iterator-loop in Java.

Syntax:

for (Type var : expression) statement

for (Type var : expression, expression1) statement

Description of Syntax: A loop statement consists of the following elements:

• The keyword for indicates the beginning of a for-loop statement. It is

followed by a parenthesis defining the loop iterator, i.e., a variable to

which successively all values of the expression are assigned. Therefore,

expression must either evaluate to a set or a sequence.

• The statement (or statement block enclosed in curly braces) is then

executed for each element in the collection specified by expression

while the iterator var is successively assigned to each individual value in

the collection.

• An optional separator expression expression1 which is evaluated and

emitted (without line end) at the end of each iteration if further iterations

will happen. Such a separator expression simplifies generating value lists.

Example:

for (DecisionVariable var: config.variables()) {
 //operate on var
}

for (DecisionVariable var: config.variables(), ”, ”) {
 //print var (the separator will be added if nee ded)
}

3.2.8.6 Content

The content statement is used to generate the content of the target artefact.

Basically, all characters given in a String (enclosed in a pair of apostrophs or quotes

including appropriate Java escapes and line breaks) are emitted as output to the

result artefact. Content statements executed in the course of template evaluation

according to the control flow make up the entire content of the target artefact

(fragment). A content statement may consist of multiple lines as part of the content.

Thereby, variable references or IVML expressions are substituted as described for

variables in Section 3.2.7.

Without further consideration, also the indentation whitespaces for pretty-printing a

VIL-template will be taken over into the resulting artefact. In order to provide more

control about the formatting, the annotation @indent allows specifying the number

VIL Language Specification

 36

of whitespaces used as one indentation step (value indentation), the number of

whitespaces to be considered in tabulator emulation (value tabEmulation) and

also how many additional whitespaces (value additional) are used to indent the

content statement, i.e., whether the following lines after the lead in character are

further subject to indentation or not. Further whitespaces in the content are

considered as formatting of the content itself and are taken over into the artefact. In

addition, an optional numerical value can be specified at each content statement in

order to programmatically indent the configuration by the given number of

whitespaces.

Syntax:

” text”

print ” text”

” text” | expression;

’ text’ | expression;

Description of Syntax: A content statement consists of the following elements:

• The optional keyword print , which indicates that no line end shall be

emitted at the end of the content. If absent, implicitly a print-line is

performed. The print form of the content statement is helpful in

combination with the separator expression in loops.

• The lead in / lead out marker (apostrophe or quote) indicates the content

statement and marks the actual content. Two forms are used to enable

the use of the opposite character in content. A content statement may

cover multiple lines of content.

• An optional indentation expression can be indicated by the pipe symbol

and followed by a numerical expression. The numerical expression

determines the amount of whitespaces to be used as mandatory

indentation prefix for each individual line of the actual content statement.

Only if the indentation expression (may be a constant or a true expression)

is specified, a semicolon is required.

Example:

’CREATE DATABASE ${var.name()}’
’CREATE TABLE data’ | 4;

VIL Language Specification

 37

3.3 VIL Expression Language

In this section, we will define the syntax and the semantics of the VIL expression

language, which is common to the VIL build language and the VIL template language.

Similar to IVML, expressions in the VIL languages are inspired by OCL. Thus, most of

the content in this section is taken from OCL [6] or the IVML language specification

[3, 7] and adjusted to the need, the notational conventions, and the semantics of the

VIL languages, in particular also regarding the syntax of the iterators and the absence

of quantors in VIL.

3.3.1 Reserved Keywords

Keywords in the VIL expression language are reserved words. That means that the

keywords must not occur anywhere in an expression as the name of a rule, a

template or a variable. The list of keywords is shown below:

• and
• false
• new
• not
• or
• sequenceOf
• setOf
• super
• true
• xor

In order to increase reuse among the VIL languages, the VIL expression language also

provides the definition of common language concepts such as variable declarations

and parameter lists. The related keywords were already listed in Section 3.1.1 and

3.2.1, respectively.

3.3.2 Prefix operators

The VIL expression language defines two prefix operators, the unary

• Boolean negation ‘not ’ and its alias ‘!’.

• Numerical negation ‘- ‘ which changes the sign of a Real or an Integer.

3.3.3 Infix operators

Similar to OCL, in VIL the use of infix operators is allowed. The operators ‘+,’ ‘- ,’ ‘*. ’

‘/ ,’ ‘<,’ ‘>,’ ‘<>’ ‘<=’ ‘>=’ are used as infix operators. If a type defines one of those

operators with the correct signature, they will be used as infix operators. The

expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the “+” operation on a (the operand) with b as the parameter to the

operation. The infix operators defined for a type must have exactly one parameter.

VIL Language Specification

 38

For the infix operators ‘<,’ ‘>,’ ‘<=,’ ‘>=,’ ‘<>,’ ‘and ,’ ‘or ,’ ‘xor ’, the return type is

Boolean.

Please note that, while using infix operators, in VIL Integer is a subclass of Real. Thus,

for each parameter of type Real, you can use Integer as the actual parameter.

However, the return type will always be Real. We will detail the operations on basic

types in Section 3.4.2.

3.3.4 Precedence rules

The precedence order for the operations, starting with highest precedence, in IVML

is:

• dot operations: ‘. ’ (for operation calls in object-oriented style)

• unary ‘not ’, !(alias for not) and unary minus ‘- ‘

• ‘* ’ and ‘/ ’

• ‘+’ and binary ‘- ‘

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘==’ (equality), ‘<>’, ‘!= ’ (alias for ‘<>’)

• ‘and ’, ‘or ’ and ‘xor ’

‘(‘ and ‘) ’ can be used to change precedence.

3.3.5 Datatypes

All artefacts defined by the extensible VIL artefact model as well as the various built-

in types are available to the expression language and may be used in expressions.

IVML elements are mapped into VIL via IVML qualified names. Figure 1 illustrates the

VIL type hierarchy (not detailing the IVML integration through the configuration

types). Below, we discuss the use of datatypes.

Figure 1: Overview of the VIL type system

AnyType

Type

String Real

Integer

Boolean

Extending

artefacts

Collection<T>

Set<T> Sequence<T>

Artifact

Map<K,V>

Configuration

FileSystemArtifact

FolderArtifact FileArtifact

RuntimeComponent

Path

XmlFileArtifact

VtlFileArtifact

Artefact (meta) model

Configuration

types

Container

Basic types

VIL Language Specification

 39

3.3.6 Type conformance

Type conformance in IVML constraints is inspired by OCL (cf. OCL section 7.4.5):

• AnyType is the common superclass of all types. All types comply with

AnyType . However, AnyType is not directly available to the user and used

internally to denote expressions of unknown type to be resolved and checked

while execution time of the specifying script.

• Each type conforms to its (transitive) supertypes. Figure 1 depicts the IVML

type hierarchy.

• Type conformance is transitive.

• The basic types do not comply with each other, i.e. they cannot be compared,

except for Integer and Real (actually the type Integer is considered as a

subclass of Real).

• Containers are parameterized types regarding the contained element type.

Containers comply only if they are of the same container type and the type of

the contained elements complies or if no type parameters are given (deferred

to script evaluation time).

3.3.7 Side effects

In contrast to OCL, some constraint expressions in IVML may lead to side effects, in

particular to modifications of artefacts and artefact fragments.

3.3.8 Undefined values

Basically, variables and IVML qualified names, i.e., links into a variability model, may

be undefined. During evaluation of expressions at script or template execution time,

undefined (sub-)expressions are ignored and do not lead to failing of rules or sub-

templates.

3.3.9 Collection operations

The VIL artefact model and the IVML integration into VIL in terms of the

Configuration type define many operations returning collections. Operating with

collections is specifically meant to enable a flexible and powerful way of accessing

information and for deriving artefacts.

Practically, collections in VIL are sets, sequences, or maps as introduced in Section

3.1.5.4. Collections are a basis for iterations in the VIL template language (Section

3.2.8.5) as well as for joins and map iterations in the VIL build language (Section

3.1.8.5). Therefore, we defined a set of basic operations on the artefact types and

the Configuration providing convenient access through selection and filtering.

However, with an increasing amount of information provided by the accessible

types, more and more collection access operations and related changes to the VIL

types will be needed. However, we refrained from a specific syntax for these

operations as in IVML and rely on implicit iterator variables similar to other implicit

variables in the VIL languages. One example is the select operation, which returns all

VIL Language Specification

 40

elements of a collection complying to a certain Boolean selection expression. An

example for an expression with a generic iterator is

configuration.variables().select(VAR.name().length() = 10)

Which returns those decision variables with a name of length 10 (VAR is the generic

iterator variable implicitly provided by the VIL language for such specific collection

operations).

3.4 Built-in operations

Similar to OCL and IVML, all operations in VIL are defined on individual types and can

be accessed using the “.” operator, such as set.size() . However, this is also true

for the equality, relational, and mathematical operators but they are typically given

in alternative infix notation, i.e., 1 + 1 instead of 1.+(1) as stated in Section 3.3.3.

Further, the unary negation is typically stated as prefix operator. Due to the VIL

artefact model, the integration with IVML and the specific purpose of variability

instantiation, the VIL types define a different set of operations than OCL/IVML6.

In this section, we denote the actual type on which an individual operation is defined

as the operand of the operation (called self in OCL). The parameters of an operation

are given in parenthesis. Further, we use in this section the Type-first notation to

describe the signatures of the operation.

Please note that those operations starting with “get” (Java-getters) are also available

with their short name without “get” in order to simplify script and template creation,

e.g., the getName() operation is also available as its aliased operation name() . We

will make this explicit by listing both operation signatures.

3.4.1 Internal Types

3.4.1.1 AnyType

AnyType is the most common type in the VIL type system. All types in VIL are type

compliant to AnyType . In particular, AnyType is used as type if the actual type is

unknown at parsing time and shall be determined dynamically at runtime. Therefore,

AnyType can be assigned to variables of any type (but no specific operations can be

executed on AnyType).

3.4.1.2 Type

Type represents type expressions themselves and enables the type-generic selection

type-compliant elements from collections.

3.4.2 Basic Types

In this section, we detail the operations for the basic VIL types.

6 An extended set of operations will be defined by future extensions of VIL.

VIL Language Specification

 41

3.4.2.1 Real

The basic type Real represents the mathematical concept of real numbers following

the Java range restrictions for double values. Note that Integer can automatically

be converted to Real .

• Real + (Real r)

The value of the addition of self and the operand.

• Real - (Real r)

The value of the subtraction of r from the operand.

• Real * (Real r)

The value of the multiplication of the operand and r.

• Real - ()

The negative value of the operand.

• Real / (Real r)

The value of the operand divided by r. Leads to an evaluation error if r is

equal to zero.

• Boolean < (Real r)

True if the operand is less than r.

• Boolean > (Real r)

True if the operand is greater than r.

• Boolean <= (Real r)

True if the operand is less than or equal to r.

• Boolean >= (Real r)

True if the operand is the same as r.

• Boolean = (Real r)

True if the operand is the same as r.

• Real abs()

The absolute value of the operand.

• Integer floor ()

The largest integer that is less than or equal to the operand.

• Integer ceil()

The closest integer value that is greater or equal to the operand.

• Integer round()

The integer that is closest to the operand. When there are two such integers,

the largest one.

3.4.2.2 Integer

The standard type Integer represents the mathematical concept of integer

numbers following the Java range restrictions for integer values. Note that Integer

is a subclass of Real .

• Integer + (Integer i)

The value of the addition of the operand and i.

• Integer - (Integer i)

The value of the subtraction of i from the operand.

• Integer * (Integer i)

The value of the multiplication of the operand and i.

VIL Language Specification

 42

• Real / (Integer i)

The value of the operand divided by i. Leads to an evaluation error if i is equal

to zero.

• Boolean < (Integer i)

True if the operand is less than i.

• Boolean > (Integer i)

True if the operand is greater than i.

• Boolean <= (Integer i)

True if the operand is less than or equal to i.

• Boolean >= (Integer i)

True if the operand is greater than or equal to i.

• Boolean == (Integer i)

True if the operand is the same as i.

• Integer - ()

The negative value of the operand.

• Integer abs()

The absolute value of the operand.

Conversions: Integer values can automatically be converted to Real values.

3.4.2.3 Boolean

The basic type Boolean represents the common true/false values.

• Boolean == (Boolean a)

True if the operand is the same as a.

• Boolean or (Boolean b)

True if either self or b is true.

• Boolean xor (Boolean b)

True if either self or b is true, but not both.

• Boolean and (Boolean b)

True if both b1 and b are true.

• Boolean not ()

True if self is false and vice versa.

• Boolean ! ()

True if self is false and vice versa.

3.4.2.4 String

The standard type String represents strings, which can be ASCII.

• Integer length ()

The number of characters in the operand.

• String + (String s)

The concatenation of the operand and s.

• String + (Path p)

The concatenation of the operand and the string representation of path p.

• String substring(Integer start, Integer end)

VIL Language Specification

 43

Returns the substring of the operand from start (inclusive) to end (exclusive).

operand is returned in case of any problem, e.g., positions exceeding the

valid index range.

• Boolean == (String s)

True if the operand is the same as s.

• Boolean matches (String r)

Returns whether the operand matches the regular expression r. Regular

expressions are given in the Java regular expression notation. For example,

the following operation will check whether mail is a valid e-mail-adress:
mail. matches([\w]*@[\w]*.[\w]*) ;

• Integer toInteger ()

Converts the operand to an Integer value.

• Real toReal ()

Converts the operand to a Real value.

3.4.3 Container Types

This section defines the operations of the collection types. VIL defines one abstract

collection type Collection and two specific collections, namely Set and

Sequence . All collection types are parameterized by one parameter. Below, ‘T’ will

denote the parameter for the collection types. A concrete collection type is created

by substituting a type for the parameter T. So a collection of integers is referred in

VIL by setOf(Integer) .

In addition, VIL defines the type Map, an associative container, which allows to relate

keys to values.

3.4.3.1 Collection

Collection is the abstract super type of all collections in VIL.

• Integer size ()

The number of elements in the collection operand.

• Boolean includes (T object)

True if object is an element of operand, false otherwise.

• Boolean excludes (T object)

True if object is not an element of operand, false otherwise.

• Integer count (T object)

The number of times that object occurs in the collection operand.

• Boolean ==(Collection<Type> c)

Returns whether operand contains the same elements than c, for ordered

collections such as Sequence also whether the elements are given in the

same sequence.

• Boolean equals(Collection<Type> c)

Returns whether operand contains the same elements than c, for ordered

collections such as Sequence also whether the elements are given in the

same sequence.

• Boolean isEmpty ()

Is the operand the empty collection?

VIL Language Specification

 44

• Boolean isNotEmpty ()

Is the operand not the empty collection?

3.4.3.2 Set

The type Set represents the mathematical concept of a set. It contains elements

without duplicates. Set inherits the operations from Collection .

• Sequence<T> toSequence ()

Turns operand into a sequence.

• Set<Type> selectByType (Type t)

Returns all those elements of operand that are type compliant to t.

• Set<T> excluding (Collection<T> s)

Returns a subset of operand, which does not include the elements in s.

• Set<T> select (Expression e)

Returns the elements in operand, which comply with the iterator expression

e (via the implicit iterator variable VAR).

3.4.3.3 Sequence

A Sequence is a Collection in which the elements are ordered. An element may

be part of a Sequence more than once. Sequence inherits the operations from

Collection .

• T get (Integer index)

Returns the element of operand at position index. index must be valid, i.e.,

not negative and less than size().

• T [] (Integer index)

The []-operator returns the element of operand at position index. index must

be valid, i.e., not negative and less than size().

• Boolean ==(Collection<Type> c)

Returns whether operand contains the same elements in the same sequence

than c.

• Boolean equals(Collection<Type> c)

Returns whether operand contains the same elements in the same sequence

than c.

• Set<T> toSet ()

Turns operand into a set (excluding duplicates).

• Sequence<T> selectByType (Type t)

Returns all those elements of operand that are type compliant to t.

• Sequence <T> excluding (Collection<T> s)

Returns a subset of operand, which does not include the elements in s.

• Sequence <T> select (Expression e)

Returns the elements in operand which comply with the iterator expression e

(via the implicit iterator variable VAR).

3.4.3.4 Map

The Map type represents an associative container, which is parameterized over the

type of keys K and the type of values V.

VIL Language Specification

 45

• V get (K key)

Returns the element of operand at position index. index must be valid, i.e.,

not negative and less than size().

• V [] (K key)

The []-operator returns the value assigned to the given key in operand.

Sequences which contain sequences with exactly two entry types matching the types

of Map can be converted automatically into a Map instance.

3.4.4 Configuration Types

Configuration types realize the integration with IVML. As the VIL languages are

intended for variability instantiation rather than variability modelling, the

Configuration types neither support changing the underlying IVML model nor its

configuration.

3.4.4.1 IvmlElement

The IvmlElement is the most common configuration type. All configuration types

discussed in this section are subclasses of IvmlElement . Further, this type

represents the IVML identifiers used in VIL scripts or templates.

• Boolean ==(IvmlElement i)

Returns whether operand is the same IvmlElement as i.

• String getName () / String name ()

Returns the (unqualified) name of the operand.

• String getQualifiedName () / String qualifiedName ()

Returns the unqualified name of the operand.

• String getType () / String type ()

Returns the (unqualified) name of the type of the operand.

• String getQualifiedType () / String qualifiedType ()

Returns the unqualified name of the type of the IVML element.

• Attribute getAttribute (String name) / Attribute attribute (String name)

Returns the attribute of the operand with given name.

• Attribute getAttribute (IvmlElement element) / Attribute attribute

(IvmlElement element)

Returns the attribute of the operand matching the given IVML identifier.

• AnyType getValue () / AnyType value ()

Returns the (untyped) configuration value of the operand.

• String getStringValue () / String stringValue ()

Returns the configuration value of the operand as a String.

• Boolean getBooleanValue () / Boolean booleanValue ()

Returns the configuration value of the operand as a Boolean.

• Integer getIntegerValue () / Integer integerValue ()

Returns the configuration value of the operand as an Integer.

• Real getRealValue () / Real realValue ()

Returns the configuration value of the operand as a Real.

• EnumValue getEnumValue () / Enum enumValue ()

Returns the configuration value of the operand as an EnumValue.

VIL Language Specification

 46

An IvmlElement can automatically be converted to a String containing the name

of the IvmlElement .

3.4.4.2 EnumValue

This subtype of IvmlElement represents an IVML enumeration value. This subtype

of IvmlElement does not specify any additional operations.

3.4.4.3 DecisionVariable

This subtype of IvmlElement represents a configured IVML decision variable.

• Sequence<DecisionVariable> variables()

Returns the frozen nested variables of operand. Except for the IVML types

container and compound, this sequence will always be empty.

• Sequence<Attribute> attributes()

Returns the frozen attributes of operand. Except for the IVML types container

and compound, this sequence will always be empty.

3.4.4.4 Attribute

This subtype of IvmlElement represents a configured IVML attribute. This subtype

of IvmlElement does not specify any additional operations.

3.4.4.5 IvmlDeclaration

This subtype of IvmlElement represents the type underlying an IVML decision

variable. Instances of this type do not provide any configuration values rather than

providing access to the structure of the represented type, e.g., the nested variable

declarations in an IVML compound.

3.4.4.6 Configuration

The Configuration type provides access to the frozen configuration values as well

as to the type declarations for a certain IVML model. In particular, the configuration

type allows to create projections of a configuration, e.g., to select a subset of

decision variables and specify further operations on that subset such as passing it to

rules or to (one or more) instantiators. Although being an IvmlElement , a

configuration instance will not provide access to values.

• Sequence<DecisionVariable> variables()

Returns the configured and frozen decision variables of operand.

• Sequence<Attribute> attributes()

Returns the configured and frozen attributes of operand.

• Boolean isEmpty()

Returns whether configuration in operand is empty, i.e., does not contain

decision variables. This may occur due to the projection capabilities of this

type.

• DecisionVariable getByName(String name) / DecisionVariable

byName(String name)

Returns the specified decision variable (if it exists).

• Configuration selectByName(String namePattern)

VIL Language Specification

 47

Returns a configuration as a projection of operand containing those decision

variables, which are of the type specified in terms of a Java regular expression

applied on (qualified and unqualified) decision variable names.

• Configuration selectByType(String typePattern)

Returns a configuration as a projection of operand containing those decision

variables, which are of the type specified in terms of a Java regular expression

applied on (qualified and unqualified) type names.

• Configuration selectByAttribute(String namePattern)

Returns a configuration as a projection of operand containing those decision

variables, which are attributed by the attribute specified in terms of a Java

regular expression applied on attribute names.

• Configuration selectByAttribute(String name, AnyType value)

Returns a configuration as a projection of operand containing those decision

variables which are attributed by the specified attribute (in terms of an IVML

identifier) and value.

3.4.5 Built-in Artefact Types and Artefact-related Types

In this section, we will discuss the built-in artefact types. Please note that the (meta

model) of the artefact model is extensible, so that further as well as derived types

may be added if needed.

3.4.5.1 Path

A path represents a relative or absolute file or folder. Paths are always relative to the

containing project, in more detail to the containing artefact model and normalized in

Unix notation (using the slash as path separator). Further, paths may be patterns and

contain wildcards according to the ANT conventions [9].

• String getPath() / String path()

Returns a string representation of operand.

• Boolean isPattern()

Returns whether the operand is a pattern, i.e., whether it contains wildcards.

• JavaPath toJavaPath()

Explicitly converts the operand into a Java package path.

• String toOSPath()

Turns the operand into a relative operating system specific path.

• String toOSAbsolutePath()

Turns the operand into an absolute operating system specific path.

• deleteAll()

Deletes all artefacts in the operand path.

• mkdir()

Creates a directory from the operand path. This operation will fail if applied

to a pattern.

• Boolean matches(Path p)

Returns whether the (pattern in) operand matches the given path.

• Set<FileArtifact> selectByType(Type t)

Returns those artefacts matching operand and complying to the given

artefact type t.

VIL Language Specification

 48

• Set<FileArtifact> selectAll()

Returns all artefacts matching operand.

• String +(String s)

Returns the string concatenation of operand and the given String s.

• Boolean exists()

Returns whether the artefact denoted by the path exists. The operation will

always return false in case of a pattern path.

• delete()

Deletes the underlying artefact. This operation will cause no effects on

pattern paths.

• String getName() / String name()

Returns the name of the file part of the path or, in case of a pattern path, the

entire pattern path.

• Path rename(String name)

Renames the underlying artefact and returns the related new path.

Paths can be constructed from a String using the explicit constructor. Typically,

scripts shall rely on the automatic conversions from String to Path or from Path

to FileSystemArtifact . A Path can be converted automatically into a

FolderArtifact .

3.4.5.2 JavaPath

A subtype of Path representing Java package paths (separated by “.”).

3.4.5.3 Project

The project type encapsulates the physical location of a product line including all

artefacts, in particular in terms of an Eclipse project. There are no explicit

constructors for this type, as instances will be provided by the VIL/EASy-Producer

runtime environment.

• String getName() / String name()

Returns the name of the project in operand.

• Set<FileArtifact> selectAllFiles()

Returns all file artefacts in operand.

• Set<FileArtifact> selectAllFolders()

Returns all folder artefacts in operand.

• Path getPath() / Path path()

Returns the path the operand is located in.

• Path localize(Project s, Path p)

Localizes path p originally in project s to the project in operand.

• Path localize(Project s, FileSystemArtifact a)

Localizes path of a originally in project s to the project in operand. This

operation does neither copy nor move a.

• Set<FileArtifact> selectByType(Type t)

Returns those file artifacts in the operand project which comply with the

given type t.

• Path getEasyFolder()

VIL Language Specification

 49

Returns the path to the EASy producer configuration files in operand.

3.4.5.4 Text

Represents an artefact or a fragment artefact in terms of the underlying text and

allows direct manipulations. The manipulations will be written back into the artefact

at the end of the lifetime of the related VIL variable. A text representation may be

modifiable or read-only depending on the underlying artefact.

• Boolean isEmpty()

Returns whether the text representation in operand is empty.

• Boolean matches(String regEx)

Returns whether the specified regEx matches the textual representation in

operand.

• Text substitute(String regEx, String r)

Substitutes all occurrences of regEx in operand by r and returns the modified

text.

• Text replace(String s, String r)

Substitutes all occurrences of s in operand by r and returns the modified text.

This operation does not consider regular expression matches rather than

direct text matches.

• Text append(String s)

Appends s to the end of operand and returns the modified text.

• Text prepend(String s)

Prepends s before the beginning of operand and returns the modified text.

• Text append(Text t)

Appends the entire contents of t to the end of operand and returns the

modified text.

• Text prepend(Text s)

Prepends the entire contents of t before the beginning of operand and

returns the modified text.

3.4.5.5 Binary

Represents an artefact or a fragment artefact in terms of the underlying binary form

and allows direct manipulations. This type is subject to future extensions. The

manipulations will be written back into the artefact at the end of the lifetime of the

related VIL variable. A text representation may be modifiable or read-only depending

on the underlying artefact.

• Boolean isEmpty ()

Returns whether the text representation in operand is empty.

3.4.5.6 Artifact

The most common artefact type. All specific artefact types are subtypes of

Artifact .

• delete()

VIL Language Specification

 50

Delete the artifact in operand regardless of whether it is a file, a component,

or a fragment within an artifact.

• String getName () / String name()

Returns the name of the artifact in operand. The specific meaning of the

name depends on the actual artifact type.

• Text getText() / Text text()

Returns the textual representation of the artifact in operand. Whether the

representation can be manipulated depends on whether the artifact itself

may be modified.

• Binary getBinary() / Binary binary()

Returns the binary representation of the artifact in operand. Whether the

representation can be manipulated depends on whether the artifact itself

may be modified.

• rename(String n)

Renames the artifact in operand. The specific effect of this operation and

whether it may be applied at all depends on the actual artifact type.

3.4.5.7 FileSystemArtifact

Represents the most common type of file system artefacts.

• Path getPath() / Path path()

Returns the path to operand.

• move(FileSystemArtifact a)

Moves the artifact in operand to the location of a. If a exists, it will be

overwritten.

• copy(FileSystemArtifact a)

Copies the artifact in operand to the location of a. If a exists, it will be

overwritten.

3.4.5.8 FolderArtifact

This type represents a folder in the file system and always belongs to a certain

artifact model (and typically to a containing Project). FolderArtifact is a

subtype of FileSystemArtifact .

• Sequence<FileSystemArtifact> selectAll ()

Returns all file system artifacts contained in operand.

FolderArtifact can automatically be converted into a String containing the

path or into a Path denoting the location.

3.4.5.9 FileArtifact

This type represents a file in the file system and always belongs to a certain artefact

model (and typically to a containing Project). FileArtifact is a subtype of

FileSystemArtifact . Please note that the actual instance in a variable of type

FileArtifact may belong to a subtype as the creation of artefact takes artefact

specific rules into account.

VIL Language Specification

 51

A temporary FileArtifact can be constructed using the constructor without

arguments. A string (containing a path) as well as a Path can be converted

automatically into a FileArtifact .

A FileArtifact is created as the default fallback, i.e., if no more specific artefact

matches the underlying real artefact. The artefact creation mechanism may be

configured using an external Java properties file, which relates artefact names to file

path patterns (overwriting or extending the built-in rules).

3.4.5.10 VtlFileArtifact

The VtlFileArtifact type is a subtype of FileArtifact . In particular, it helps

the VTL template instantiator in dynamic dispatch between other types of file

artefacts and actual VTL templates. It does not provide additional operations or

conversions over the FileArtifact .

A VtlFileArtifact is created for all real file artefacts with file extension vtl .

3.4.5.11 XmlFileArtifact

The XmlFileArtifact is a built-in composite artefact, i.e., if it exists its content is

analysed for known substructures, which are made available for querying and

manipulation in terms of fragment artefacts.

• XmlElement getRoot() / XmlElement root()

Returns the root element of the XML artifact in operand.

• Set<XmlElement> selectAll()

Returns all XML elements contained in operand.

A XmlFileArtifact is created for all real file artefacts with file extension xml .

XmlElement

The XmlElement is a built-in fragment artefact, which belongs to the

XmlFileArtifact . In particular, it inherits all operations from Artifact such as

access to the representations of the contained text or CDATA.

• Set<XmlElement> selectAll()

Returns all XML elements contained in operand.

• Set<XmlAttributes> attributes()

Returns all XML attributes belonging to operand.

• XmlAttributes getAttribute(String n)

Returns the XML attribute in operand with the specified name n. Please note

that this operation does not fail, if the specified attribute does not exist but

rather the subsequent evaluation will stop.

• XmlAttributes setAttribute(String n, String v)

Defines or changes the XML attribute in operand with the specified name n to

the given value v.

• Set<XmlAttribute> selectByName (String regEx)

Returns those XML attributes in operand, which comply with the given name

pattern specified as Java regular expression.

VIL Language Specification

 52

XmlAttribute

The XmlElement is a built-in fragment artefact, which belongs to the

XmlFileArtifact and to the fragment artefact XmlElement . In particular, it

inherits all operations from Artifact .

• String getValue () / String value()

Returns the value of the attribute in operand.

• setValue (String v)

Changes the value of the attribute in operand to v.

3.4.6 Built-in Instantiators

VIL provides also several built-in instantiators, in particular to modify or generate

entire artefacts in one step. Basically, instantiators shall be defined using the VIL

template language (this actually happens through an instantiator for VIL templates).

However, very complex instantiation operations as well as existing (legacy)

instantiator operations shall be available to the VIL build language, also as a better

integrated alternative to just calling an operating system command. In this section,

we will discuss the instantiators shipped with the VIL implementation as well as their

specific operations. Please refer to the EASy-Producer developer documentation on

how to realize custom instantiators.

3.4.6.1 VIL Template Processor

The VIL template processor is responsible for interpreting and executing VIL

template scripts in close collaboration with the VIL build language. It may operate in

two different modes depending on the actual arguments, namely executing VIL

templates or replacing VIL expressions in a file artefact.

Basically, VIL templates receive three different parameters, the template, the

variability configuration and the target artefact (fragment) to be produced. Thereby,

the instantiator itself takes an argument of type Artifact , but the dynamic

dispatch mechanism allows specifying subtypes in the template parameters or even

to have multiple main subtemplates for different artefact types. In addition the VIL

template processor may receive an arbitrary number of named arguments specific to

the template to be executed.

This instantiator provides two instantiator operations:

• Set<FileArtifact> vilTemplateProcessor(VtlFileArtifact t, Configuration c,

Artifact a, …)

Parses and analyses the template in t, executes the template specification

using the configuration c and replaces the content of a. Additional named

arguments are passed to the VTL template t in order to customize the

processing and must comply to the additional template parameters.

• Set<FileArtifact> vilTemplateProcessor(FileArtifact t, Configuration c,

Artifact a)

Searches for VIL variables and expressions in t (variables given as

$variableName , expressions as ${expression}) and replaces them with

their actual value as defined in the configuration c. The output replaces the

content of a.

VIL Language Specification

 53

3.4.6.2 Blackbox Instantiators

In this section, we describe three built-in blackbox instantiators.

Velocity Instantiator

The Velocity7 instantiator [4] allows using one of the basic functionalities of EASy

through VIL. It provides instantiator calls for individual templates and collections of

templates.

• Set<FileArtifact> velocity(FileArtifact t, Configuration c)

Instantiates the template in t through the Velocity engine using the frozen

values from configuration c and produces the result in t.

• Set<FileArtifact> vilTemplateProcessor(Collection<FileArtifact> t,

Configuration c)

Instantiates the templates in t through the Velocity engine using the frozen

values from configuration c and produces the result in t.

Java Compiler

The Java compiler blackbox instantiator allows to directly compile Java source code

artefacts from the VIL build language. It provides the following instantiator call

• Set<FileArtifact> javac(Path s, Path t, ...)

Compiles the artefacts denoted by the source path s (possibly a path pattern)

into the target path t. Additional parameters of the Java compiler can directly

be given as named attributes, such as a collection of Strings or Paths or

Artefacts denoting the classpath, for example

sequenceOf(String) cp = {”$source/lib/myLib.jar”};

Javac(“$source/**/*.java”, “$target/bin”, classpath=cp);

AspectJ Compiler

The AspectJ [1] compiler blackbox instantiator allows to directly compile Java and

AspectJ source artefacts from the VIL build language. It provides the following

instantiator call

• Set<FileArtifact> aspectJ(Path s, Path t, ...)

Compiles the artefacts denoted by the source path s (possibly a path pattern)

into the target path t. Additional parameters of the AspectJ compiler can

directly be given as named attributes as described above for the Java

compiler blackbox instantiator.

7 http://velocity.apache.org/engine/devel/user-guide.html#Velocity_Template_Language_VTL:_An_Introduction

VIL Language Specification

 54

4 VIL Grammars

In this section we depict the actual grammar for the VIL languages. The grammar is

given in terms of a simplified xText8 grammar (close to ANTLR9 or EBNF). Simplified

means, that we omitted technical details used in xText to properly generate the

underlying EMF model as well as trailing “;” (replaced by empty lines in order to

support readability). Please note that some statement-terminating semicolons are

optional in order to support various user groups each having individual background

in programming languages.

4.1 VIL Build Language Grammar

ImplementationUnit:

 Import*

 LanguageUnit*;

LanguageUnit:

 Advice* 'vilScript' Identifier '(' ParameterList? ')'

 (ScriptParentDecl)? '{'

 VersionStmt?

 LoadProperties*

 ScriptContents

 '}' ';'?

ScriptParentDecl:

 'extends' Identifier

LoadProperties:

 'load' 'properties' STRING ';'

ScriptContents:

 (VariableDeclaration | RuleDeclaration)*

RuleDeclaration:

 (RuleModifier? Identifier '(' (ParameterList)? ') ' '=')?

 (LogicalExpression)? ':'

 (LogicalExpression (',' LogicalExpression)*)?

 RuleElementBlock ';'?

8 http://www.eclipse.org/Xtext/

9 http://www.antlr.org

VIL Language Specification

 55

RuleElementBlock:

 '{' RuleElement* '}'

RuleElement:

 VariableDeclaration

 | MapStatement

 | ExpressionStatement

 | DeferDeclaration

RuleModifier:

 'protected'

MapStatement:

 'map' '(' Identifier (',' Identifier)* '=' Expres sion ')'

 RuleElementBlock ';'?

PrimaryExpression:

 ExpressionOrQualifiedExecution

 | UnqualifiedExecution

 | SuperExecution

 | SystemExecution

 | Join

 | ConstructorExecution

Join:

 'join' '(' JoinVariable ',' JoinVariable ')'

 ('with' '(' Expression ')')?

JoinVariable:

 'exclude'? Identifier ':' Expression

SystemExecution:

 'execute' Call SubCall*

VIL Language Specification

 56

4.2 VIL Template Language Grammar

Import*

Extension*

LanguageUnit:

 Advice*

 IndentationHint?

 'template' Identifier '(' ParameterList? ')'

 ('extends' Identifier)? '{'

 VersionStmt?

 VariableDeclaration*

 VilDef*

 '}'

IndentationHint:

 '@indent' '(' IndentationHintPart (',' Indentatio nHintPart)* ')'

IndentationHintPart:

 Identifier '=' NUMBER

VilDef:

 'def' Type? Identifier '(' ParameterList? ')' Stm tBlock ';'?

StmtBlock:

 '{' Stmt* '}'

Stmt:

 VariableDeclaration

 | Alternative

 | Switch

 | StmtBlock

 | Loop

 | ExpressionStatement

 | Content

Alternative:

 'if' '(' Expression ')' Stmt (=> 'else' Stmt)?

Content:

 (STRING) ('|' Expression ';')?

VIL Language Specification

 57

Switch:

 'switch' '(' Expression ')' '{'

 (SwitchPart (',' SwitchPart)* (',' 'default' ': ' Expression)?)

 '}'

SwitchPart:

 Expression ':' Expression

Loop:

 'for' '(' Type Identifier ':' Expression

 (',' PrimaryExpression) ')' Stmt

Extension:

 'extension' JavaQualifiedName ';'

JavaQualifiedName:

 Identifier ('.' Identifier)*

4.3 Common Expression Language Grammar

Actually, parts of this common language are overridden and redefined by the two VIL

language grammars.

LanguageUnit:

 Import*

 Advice*

 Identifier

 VersionStmt?

VariableDeclaration:

 'const'? Type Identifier ('=' Expression)? ';'

Advice:

 '@advice' '(' QualifiedName ')' VersionSpec?

VersionSpec:

 'with' '(' VersionedId (',' VersionedId)* ')'

VersionedId:

 'version' VersionOperator VERSION

VIL Language Specification

 58

VersionOperator:

 '==' |'>' |'<' |'>=' |'<='

ParameterList:

 (Parameter (',' Parameter)*)

Parameter:

 Type Identifier

VersionStmt:

 'version' VERSION ';'

Import:

 'import' Identifier VersionSpec? ';'

ExpressionStatement:

 (Identifier '=')? Expression ';'

Expression:

 LogicalExpression | ContainerInitializer

LogicalExpression:

 EqualityExpression LogicalExpressionPart*

LogicalExpressionPart:

 LogicalOperator EqualityExpression

LogicalOperator:

 'and' |'or' |'xor'

EqualityExpression:

 RelationalExpression EqualityExpressionPart?

EqualityExpressionPart:

 EqualityOperator RelationalExpression

EqualityOperator:

 '==' | '<>' | '!='

VIL Language Specification

 59

RelationalExpression:

 AdditiveExpression RelationalExpressionPart?

RelationalExpressionPart:

 RelationalOperator AdditiveExpression

RelationalOperator:

 '>' | '<' | '>=' | '<='

AdditiveExpression:

 MultiplicativeExpression AdditiveExpressionPart*

AdditiveExpressionPart:

 AdditiveOperator MultiplicativeExpression

AdditiveOperator:

 '+' | '-'

MultiplicativeExpression:

 UnaryExpression MultiplicativeExpressionPart?

MultiplicativeExpressionPart:

 MultiplicativeOperator UnaryExpression

MultiplicativeOperator:

 '*' | '/'

UnaryExpression:

 UnaryOperator? PostfixExpression

UnaryOperator:

 'not' | '!' | '-'

PostfixExpression: // for extension

 PrimaryExpression

PrimaryExpression:

 ExpressionOrQualifiedExecution

 | UnqualifiedExecution

VIL Language Specification

 60

 | SuperExecution

 | ConstructorExecution

ExpressionOrQualifiedExecution:

 (Constant | '(' Expression ')') SubCall*

UnqualifiedExecution:

 Call SubCall*

SuperExecution:

 'super' '.' Call SubCall*

ConstructorExecution:

 'new' Type '(' ArgumentList? ')' SubCall*

SubCall:

 '.' Call | '[' Expression ']'

Call:

 Identifier '(' param=ArgumentList? ')'

ArgumentList:

 NamedArgument (',' NamedArgument)*

NamedArgument:

 (Identifier '=')? Expression

QualifiedName:

 Identifier ('::' Identifier)* ('.' Identifier)?

Constant:

 NumValue | STRING | QualifiedName | ('true' | 'fa lse')

NumValue :

 NUMBER

Identifier:

 ID

VIL Language Specification

 61

Type:

 Identifier

 | ('setOf' TypeParameters)

 | ('sequenceOf' TypeParameters)

 | ('mapOf' TypeParameters)

TypeParameters:

 '(' Identifier (',' Identifier)* ')'

ContainerInitializer:

 '{' (ContainerInitializerExpression

 (',' ContainerInitializerExpression)*)? '}'

ContainerInitializerExpression:

 LogicalExpression |ContainerInitializer

terminal VERSION:

 'v' ('0'..'9')+ ('.' ('0'..'9')+)*

terminal ID:

 ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0 '..'9')*

terminal NUMBER:

 '-'?

 (('0'..'9')+ ('.' ('0'..'9')* EXPONENT?)?

 | '.' ('0'..'9')+ EXPONENT?

 | ('0'..'9')+ EXPONENT)

terminal EXPONENT:

 ('e'|'E') ('+'|'-')? ('0'..'9')+

terminal STRING :

 '"'

 ('\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|'"'))*

 '"' | "'"

 ('\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|"'"))*

 "'"

terminal ML_COMMENT:

 '/*' -> '*/'

VIL Language Specification

 62

terminal SL_COMMENT:

 '//' !('\n'|'\r')* ('\r'? '\n')?

terminal WS:

 (' '|'\t'|'\r'|'\n')+

terminal ANY_OTHER:

 .

VIL Language Specification

 63

References

[1] Project homepage AspectJ, 2011. Online available at:

http://www.eclipse.org/aspectj/.

[2] Eclipse Foundation. Xtend - Modernize Java, 2013. Online available at:

http://www.eclipse.org/xtend.

[3] INDENICA Consortium. Deliverable D2.1: Open Variability Modelling Approach

for Service Ecosystems. Technical report, 2011.

[4] INDENICA Consortium. Deliverable D2.4.1: Variability Engineering Tool

(interim). Technical report, 2012.

[5] INDENICA Consortium. Deliverable D2.2.2: Variability Implementation

Techniques for Platforms and Services (final). Technical report, 2013.

[6] Object Management Group, Inc. (OMG). Object Constraint Language.

Specification v2.00 2006-05-01, Object Management Group, May 2006.

Available online at: http://www.omg.org/docs/formal/06-05-01.pdf.

[7] SSE. Ivml language specification. http://projects.sse.uni-

hildesheim.de/easy/docs/ivml_spec.pdf [validated: March 2013].

[8] Richard M. Stallmann, Roland McGrath, and Paul D. Smith. GNU Make - A

Program for Directing Recompilation - GNU make Version 3.82, 2010. Online

available at: http://www.gnu.org/software/make/manual/make.pdf.

[9] The Apache Software Foundation. Apache Ant 1.8.2 Manual, 2013. Online

available at: http://ant.apache.org/manual/index.html.

