INDENICA

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Service Platform Infrastructure Repository
Concept & Realization

Abstract

The INDENICA project provides infrastructure components and tools to support the
effective creation of domain-specific Virtual Service Platforms (VSP). In this report,
accompanying the submitted code deliverable, we present the completed prototype
and accompanying concepts for a Service Platform Infrastructure repository to
support the creation of VSPs. The repository encapsulates design time, deployment
time, as well as runtime aspects of VSPs. At design time, the repository allows for the
creation of infrastructure component libraries to foster reuse and protect
investments in integration actions. Furthermore, it enables the retention of relevant
design-time information for the deployment and runtime environment of VSPs in
appropriate data stores. At runtime, the repository acts as the central entity
responsible for storing and forwarding data to all VSP components using a messaging
infrastructure.

Document ID: INDENICA - D2.3.2
Deliverable Number: D2.3.2

Work Package: WP2

Type: Deliverable
Dissemination Level: PU

Status: final

Version: 2.0

Author(s): TUV, SUH

Project Start Date: October 1st 2010, Duration: 36 months

Version History

0.1
0.2
0.3
0.4
0.5
1.0
1.1
1.2
1.3
1.4
20

Document Properties

02.
06.
12.
14.
27.
27.
13.
30.
24.
28.
28.

Nov 2011
Dec 2011
Jan 2012
Jan 2012
Jan 2012
Jan 2012
Mar 2013
Apr 2013
May 2013
May 2013
May 2013

Initial version

Update overview, repository sections
Prototype implementation notes, usage guide
Update prototype usage guide

Incorporate review comments

Final version for submission (D2.3.1).

Update overview

Update description

Update usage guide, description

Incorporate review comments

Final version for submission

The spell checking language for this document is set to UK English.

Table of Contents

Table Of CONTENESeeiiiiieeeee e et e s e e e 3
LI L o] <Kol S T={ U] o TS UUPUPRUPRRIRO 5
N [oo [¥Tot i o] o TR PP PP PSP OPPPPOPPRRN 6
2 OVEIVIEW ceiiiiiiie ittt ettt e e ettt et e e e e e e e e e s s e s r b e e e ee et e e e eeeeeeeeeesanns 7
R 0= 0T 3] 1 (o R 9
3.1 Data Store Abstraction Plugin Architecturecccceeevieiiiiiiiiiiiicccrreeeeeeee, 9
3.2 APIPIUIN ArChitECTUIE .uvvveeeeeeeeieee et 11
4 Prototype IMplementation.......ccccciiiieeiieiieei e e e e e e e e e e e e e enannes 12
A1 AP ettt sb e naeenaeas 12
LN R U LYY £l CU] o [T PPUUTTPPP 13
5 CONCIUSION cettiee e et ettt e et e s s be e e s bt e e e sanes 15

Y (=T E=] o Lol =L T TR TR TP UOPPRPPR 16

INDENICA D2.3.2

INDENICA D2.3.2

Table of Figures

Figure 1: INDENICA Runtime Infrastructure Architecture Overview..........ccccceevuvveeennn. 7
Figure 2: Repository Architecture OVEIVIEWccuveeveieiiiiieee et ireee e 9
Figure 3: Basic PlUgin INterfacecuuueeeieiiiiiiee et 10
Figure 4: Excerpt of Generic APIWSDLuuviiiiiiiiiiiee e 13
Figure 5: Exemplary MongoDB filter QUEIYcccvcuvveeii i 13

INDENICA D2.3.2

1 Introduction

The INDENICA project aims at providing infrastructure components and tools to
support the efficient and effective creation of domain-specific Virtual Service
Platforms (VSP). The Service Platform Infrastructure Repository represents a central
component to achieve these goals at design time, deployment time, and runtime. At
design time, the repository acts as infrastructure component library to foster reuse,
decrease development and integration time, as well as protect investments in the
INDENICA platform. At deployment time, the repository holds deployment
descriptors and environment configuration information enabling easy (re-)
deployment of VSPs and their components. Furthermore, the repository allows for
the transfer of relevant design and deployment time information to the runtime
environment. This allows runtime components, such as monitoring and adaptation
facilities, to take additional information about the deployed VSPs and their
infrastructure into account, facilitating greater control over the runtime
characteristics of VSPs and their environment.

In this prototype deliverable document we will discuss the concept and architecture
for the Indenica Service Platform Infrastructure Repository, provide an overview of
the prototype implementation, along with a usage guide for the provided tools, and
discuss interactions with other tools in the INDENICA ecosystem.

INDENICA D2.3.2

2 Overview

The INDENICA service platform infrastructure consists of a number of components
that help to build and run virtual service platforms. At runtime, a messaging
infrastructure is used, providing unified communication interfaces for all
infrastructure components. As shown in Figure 1, control interfaces provide for a
unified mechanism for a bidirectional communication with domain-specific
application services and components. The platform provides a publish/subscribe
mechanism, enabling complex communication patterns, and allows components to
receive information they are interested in. The infrastructure enables efficient
handling of large amounts of streaming data (messaging infrastructure), persistent
storage of relevant information and its retrieval (repository), as well as aggregation
of online and offline data.

e

e —

(a1 ((wez (a5 O+ (an O |

Messaging Infrastructure

[Monitoring Engine Adaptation Engine]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

component interaction <=—p-

Figure 1: INDENICA Runtime Infrastructure Architecture Overview

The repository contains data about deployment configurations needed by the
deployment manager, which is responsible for instantiating and assembling virtual
service platforms. The monitoring engine combines online data about the domain-
specific runtime components with historical data to draw conclusions about the
system’s status. Based on this information, the adaptation engine reasons about and
triggers reconfigurations. The rules and policies determining the monitoring and
adaptation engines are also stored in the repository.

In addition to the runtime and deployment time concerns mentioned above, the
repository represents a central part of the design time tool suite. Artefacts from
design time tools, such as the requirements engineering tool IRENE (cf. D1.2.2), the
architecture decision modelling and support framework ADVISE (cf. D1.3.2), the
variability management tool EASy-Producer (cf. D2.4.2), and the view-based
modelling framework VbMF (cf. D3.3.2), are stored in the repository. The INDENICA
tools use the repository as a storage and integration backend, allowing for unified
provenance of relevant platform assets, as well as easy sharing of artefact data
between tools. Furthermore, the repository contains platform infrastructure
template definitions used to provision physical infrastructure for running VSPs. Using

INDENICA D2.3.2

the repository along with a lifecycle evolution model allows for the realisation of
adaptation solutions spanning the complete application development lifecycle, from
design and development to runtime [1].

The repository currently supports the following artefacts, and provides specialized
storage and retrieval methods tailored to the specifics of each artefact type:

¢ |RET requirements models (cf. D1.2.2)

* Architecture decision models (cf. D1.3.2)

* Variability engineering information (cf. D2.4.2)

* View-based modelling framework models (cf. D3.3.2)

¢ Deployment descriptors (cf. D4.2.2)

* Monitoring and adaptation rules (cf. D4.2.2)

¢ Platform infrastructure configuration (e.g. Chef' cookbooks)

" http://opscode.com/chef

INDENICA D2.3.2

3 Repository

The repository is the entity in INDENICA responsible for retention and retrieval of
persistent data. It manages data that needs to be persisted or be available for
retrieval using query mechanisms. The key design goals for the repository are
availability (provide a scalable architecture that is able to cope with high volumes of
data and frequent requests), data store abstraction (technological flexibility with
respect to the technology used for storing data in the backend), and domain-specific
data retrieval modes (different query methods tailored to the specifics of various
types of information managed by the repository).

Deployment View Model | *** .
API API

]
| |
| |
| |
| |
| |
: API Plugins I
| |
: (Repository Core) i
|

|
: L Data Store Abstraction Plugins !
|
: j :
| |
1 |
! |

|
: RDBMS SimpleDB Chef ‘e !
\ (saL) Repository

P

N, ——————

Figure 2: Repository Architecture Overview

An overview of the repository architecture is shown in Figure 2. The repository core
provides basic infrastructure such as default service interfaces, as well as initializing
the APl and data store abstraction facilities. This enables the repository to be data
store agnostic, accommodating for different requirements of service platform
installations. The API plugin facility allows for the retrieval of stored data via custom
interfaces for different types of information (deployment descriptors, monitoring
rules, log data, etc.). The repository’s capabilities range from storing simple
key/value entries for global configuration values to providing structured and
interconnected data formats, such as platform-specific variability models.

Such tailored interfaces in the form of domain-specific query languages, exposed
through custom APIs, or GUIs enable efficient interaction with the repository. The
data store abstraction allows for the transparent use of multiple storage back ends,
ideally suited for the stored data and the particular application environment. The
according plugin architectures are discussed below.

3.1 Data Store Abstraction Plugin Architecture

In the following, we discuss the repository data storage and retrieval plugin
architecture used to enable customized persistence and query mechanisms tailored
to each supported artefact type and usage scenario.

Due to the diverse nature of data artefacts produced during the creation of VSPs, the
repository needs to be able to easily accommodate various storage back ends. This is

INDENICA D2.3.2

achieved by the data store abstraction plugin mechanism, specifying a thin interface
layer to be implemented by platform integrators. As shown in Figure 3, plugins
announce storage and retrieval capabilities by implementing the according
canHandle methods. The repository core infrastructure provides a generic artefact
container, Data, to wrap arbitrary XML content for storage. Furthermore, a generic
data retrieval specification, Filter, is provided to query data according to the
capabilities of the implemented storage back end.

public interface IDataStorePlugin {
boolean canHandle(Filter f);
boolean canHandle(Data d);

Data getData(Filter f);
Data storeData(Data d);

Figure 3: Basic Plugin Interface

The repository does not mandate any additional specific semantics from storage
back ends, so that plugins are free to define custom query and storage semantics
according to the capabilities of the employed storage technology. By convention, all
plugins support queries by name and artefact identifier.

To further illustrate the merits of this approach, we discuss a concrete storage plugin
in more detail. The Chef plugin accepts infrastructure data structures
representing the physical infrastructure available for a given VSP instance, as well as
required software packages. The schema of the used document type is provided with
the plugin documentation and is used by consumers either directly through the
generic repository APl or through custom API providers, such as the Integration API
provider discussed below. The plugin transforms received data into appropriate
constructs to store in the underlying Chef instance. Furthermore, the plugin supports
a number of filter constructs to query the stored infrastructure data by, e.g.,
hardware properties (RAM, CPU, disk), installed software, or available network
interfaces. In addition to storing infrastructure data in an appropriate storage back
end, this plugin enables automatic provisioning of physical infrastructure through the
associated Chef configuration management (CM) system according to data managed
by INDENICA tools. The infrastructure storage plugin is based on Chef for tighter
integration with the deployment manager presented in D4.2.2, but the repository
can easily support different CM systems, such as Puppet? or cfengine’, by providing
appropriate plugins.

The presented storage abstraction allows for easy integration of custom storage back
ends tailored to the stored data. Furthermore, switching storage back ends is
intrinsically supported, avoiding vendor lock-in effects.

2 http://puppetlabs.com/
3 http://cfengine.com/

10

INDENICA D2.3.2

3.2 API Plugin Architecture

In the following, we discuss the repository API plugin architecture enabling tailored
interfaces using domain-specific query languages.

In addition to the generic query API, exposing storage and filter capabilities as
provided by data store abstraction plugins, the repository supports domain-specific
API plugins to gather data from multiple back ends in an application-specific way.

APl plugins can be implemented as APl service endpoints or repository client
libraries. Service endpoints extend the running repository instance, offering domain-
specific API to all repository clients. Repository client libraries are deployed with
tools consuming repository data and are especially suitable if a custom API will only
benefit a single or very few client applications. Plugins implemented as client
libraries can furthermore be used to realise repository proxies, allowing for clear
separation of core repository functionality and domain-specific add-ons.

11

INDENICA D2.3.2

4 Prototype Implementation

In this section, we discuss the prototype implementation of the Service Platform
Infrastructure Repository, along with a guide on how to use the repository within the
INDENICA tool ecosystem.

The prototype infrastructure is realized using the Jetty* servlet engine, providing the
core repository service interface. The previously discussed plugin infrastructure
allows for the addition of arbitrary storage backend plugins. The currently provided
plugins allow storage of INDENICA assets using Chef (a configuration management
system, as mentioned above), MongoDB® (a document-oriented database), as well as
conventional file systems. These technologies have been chosen based on a careful
evaluation of requirements of the INDENICA tool suite and the artefacts they
produce, as well as the current state of the art in database and data processing
technology. In the following we provide documentation for the core repository API,
as well as a usage guide for the provided example scenario. Additional
demonstrations of repository usage throughout INDENICA will be provided with the
deliverables describing the according tools, such as the Architecture Decision
Framework (D1.3.2), the Variability Management Tool (D2.4.2), the VSP engineering
tool suite (D3.3.2), as well as the runtime infrastructure tools (D4.2.2).

4.1 API

As mentioned above, the core repository API serves as a generic layer exposing the
underlying storage plugins. Hence, it provides a very simple interface to pass data
storage, retrieval, and subscription requests to the underlying storage infrastructure.
An excerpt of the WSDL description of the generic API is shown in Figure 4 below.

<definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://impl.services.runtime.indenica.eu/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://impl.services.runtime.indenica.eu/"
name="RepositoryImplService">
<binding xmlns:nsl="http://services.runtime.indenica.eu/"
name="RepositoryImplPortBinding" type="nsl:IRepository">
<soap:binding
transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="getData">
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></output>
</operation>
<operation name="subscribeToData">
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></output>
</operation>
<operation name="publishData">
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></output>
</operation>
</binding>

* http://www.eclipse.org/jetty/
5 http://www.mongodb.org/

12

INDENICA D2.3.2

<service name="RepositoryImplService">
<port name="RepositoryImplPort"
binding="tns:RepositoryImplPortBinding">
<soap:address location="http://0.0.0.0:45689/repo"/>
</port>
</service>
</definitions>

Figure 4: Excerpt of Generic API WSDL

The generic APl does not make any assumptions on the data structure, but allows
storage plugins to define their own processing semantics using the generic Filter
and Data containers mentioned in Section 3.1.

In the following, we briefly illustrate the MongoDB plugin filter semantics. Further
documentation can be found in the according Javadoc. The MongoDB plugin allows
storing arbitrary XML documents. Artefacts to be stored are converted to JSON prior
to storage, and the plugin exposes the complete MongoDB query API¢ for retrieving
stored documents. An exemplary query retrieving hosts with more than 1024MB
RAM is shown in Figure 5.

<query>{ node: { ram: { S$Sgt: 1024 } }</query>

Figure 5: Exemplary MongoDB filter query

As mentioned above, the repository prototype currently ships with additional
storage plugins for Chef, as well as file system storage. These plugins expose storage
and retrieval semantics similar to the MongoDB plugin, offering the underlying
store’s native persistence and querying capabilities. API plugins, such as the provided
IvmlRepository APl plugin are used to provide an application-specific interface
for consumers.

4.2 Usage Guide

In this section we provide a step-by-step guide for executing the provided simple
example application, illustrating the interaction of a simplified client extracted from
the variability management tool set with the Service Platform Infrastructure
Repository.

In order to successfully execute the provided samples, a MongoDB instance must be
available on port 27017.
To start a repository instance with the lvml API plugin, run
java —-Jjar \
IvmlRepository-1-SNAPSHOT-with-dependencies.jar

The repository will perform some basic sanity checks and listen on port 45689 by
default.
The exemplary client application can be launched using

Jjava —Jjar IvmlRepositoryClient-1-SNAPSHOT-with-
dependencies.jar

The client will retrieve a resolved variability model from the repository, check its
consistency and report its properties.

® http://docs.mongodb.org/manual/core/read-operations/

13

INDENICA D2.3.2

Note that this prototype deliverable contains only the core repository infrastructure
and a simple example. The repository is extensively used throughout the project, and
its usage is documented in the according deliverables (as mentioned above).

14

INDENICA D2.3.2

5 Conclusion

The Service Platform Infrastructure Repository takes a key role in the Virtual Service
Platform, providing global access to various types of information with diverse
requirements concerning storage and retrieval. In this document we describe the
interim version of the INDENICA Service Platform Infrastructure Repository
prototype, including documentation on its usage. The key design goals of the
repository are scalability, data store abstraction and domain-specific data retrieval
possibilities. We present the repository architecture, its main components, along
with a set of tools developed to support platform infrastructure configuration using
the Service Platform Infrastructure Repository. The repository implementation builds
on state-of-the-art technologies that have been carefully evaluated and chosen to
fulfil their particular purpose. It provides a solid basis for extensibility and is
integrated with other tools in the INDENICA ecosystem that rely on the storage and
retrieval capabilities of the repository.

15

INDENICA D2.3.2

References

[1] C. Inzinger, W. Hummer, |. Lytra, P. Leitner, H. Tran, U. Zdun, and S. Dustdar,
“Decisions, Models, and Monitoring — A Lifecycle Model for the Evolution of Service-
Based Systems,” presented at the 17th IEEE International Enterprise Distributed
Object Computing Conference, 2013, p. to appear.

16

