INDENICA

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Service Platform Infrastructure Repository
Concept & Realization (Interim)

Abstract

The INDENICA project provides infrastructure components and tools to support the
effective creation of domain-specific Virtual Service Platforms (VSP). In this report,
accompanying the submitted code deliverable, we present a concept and first
prototype for a Service Platform Infrastructure repository to support the creation of
VSPs. The repository encapsulates design time, deployment time, as well as runtime
aspects of VSPs. At design time, the repository allows for the creation of
infrastructure component libraries to foster reuse and protect investments in
integration actions. Furthermore, it enables the retention of relevant design-time
information for the deployment and runtime environment of VSPs. At runtime, the
repository acts as the central entity responsible for storing and forwarding data to all
VSP components using a messaging infrastructure.

Document ID: INDENICA - D2.3.1
Deliverable Number: D2.3.1

Work Package: WP2

Type: Deliverable
Dissemination Level: CcoO

Status: final

Version: 1.0

Author(s): TUV, SUH

Project Start Date: October 1st 2010, Duration: 36 months

Version History

0.1
0.2
0.3
0.4
0.5
1.0

Document Properties

02. Nov 2011
06. Dec 2011
12. Jan 2012
14. Jan 2012
27. Jan 2012
27. Jan 2012

Initial version

Update Overview, Repository sections
Prototype Implementation Notes, Usage Guide
Update Prototype Usage Guide

Incorporate review comments

Final version for submission.

The spell checking language for this document is set to UK English.

Table of Contents

Table Of CONTENESeeiiiiieeeee e et e s e e e 3
LI L o] <Kol S T={ U] o TS UUPUPRUPRRIRO 5
N [oo [¥Tot i o] o TR PP PP PSP OPPPPOPPRRN 6
2 OVEIVIEW ceiiiiiiie ittt ettt e e ettt et e e e e e e e e e s s e s r b e e e ee et e e e eeeeeeeeeesanns 7
R 0= 0T 3] 1 (o R 8
4 Prototype IMplementation.......ccccciiiiiiieeieeieeeee e e e e e e e e e e e e 9

L N U LT { G U] o [T U PUUUUTRRRRRRRE 9

D CONCIUSION ettt e et e e et e e e e e e e e ee e e e e aaeseeeereeaaeaeraerarenaaaes 27

INDENICA D2.3.1

INDENICA D2.3.1

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

INDENICA Runtime Infrastructure Architecture Overview...........cccccuveeeeennnns 7
Repository Architecture OVEIVIEWcooovveeiicciiiirriereeeeeeeeeee e 8
Configuration Launch Dialogccccoceviiiiiieieiieeeeee e 10
Connect to Repository Database......cccvvveeeeeeeeieiiiieiiecccereeeeee e, 10
Establish Database CoONNECtiONccuueviiiieiiiiieeeeeeeee e 10
Environment Configuration Dialog..........ccoovveeiiiiiiiiiiiieeeeeeeeeeee e, 11
Create new Environment Configuration.......ccccccccoeveeiiecicciiiiieveeeeeeeeee e, 11
New Environment Configuration Dialog........ccceeeeeiviiiiieii i, 12
Environment Configuration Defaults and Usage Hints...........cccoeeveevnnnnnnns 12

Sample Infrastructure Instance Environment Configuration 13
Launch Incoming EVents Dialog.......cccoeveeiieiieciciiiiiieeeeeeeeeeee e, 14
Load previously created Configurationccccccvvvirreeeeeeiieeeee e, 14
INCOMING EVENTS DIAlOg ..ceeeeeiiiiieei it 15
An exemplary Monitoring EVENt TYPe.....coccvvieeeeeirciieeee e ceiveee e 16
ServicelnvocationFailure EVeNt TYPe....cccvrvereeeeeeiieeeeeeeee e 17
Launch the outgoing Adaptation Events Dialogceveeeeeeieiieiiiiiicciccnnnns 18
Exemplary Adaptation Interface Eventcccccecviivvvieeeeeieeeieee e, 19
Exemplary Adaptation Interface Eventcccccevvvviiveeeeeeieeeiee e, 20
Launch Monitoring Engine Configurationccccvvveeeeeeieeeiiiiieiieiicccnnnns 21
Exemplary Monitoring RUIEeeeeviieiieeieee e 22
Launch Adaptation Engine Configuration........cccccovveeeeeeeeeeeeieeeeeeieescccnnnns 23
Exemplary Adaptation RUIE......eeeeeieeiieiiie e 24
Exemplary Adaptation RUIE......eeeeeieeiiiiiieiccccccereeeee e 25

Exemplary Tuscany Runtime Configurationccccccveeeiiiiiiieee i, 26

INDENICA D2.3.1

1 Introduction

The INDENICA project aims at providing infrastructure components and tools to
support the efficient and effective creation of domain-specific Virtual Service
Platforms (VSP). The Service Platform Infrastructure Repository represents a central
component to achieve these goals at design time, deployment time, and runtime. At
design time, the repository acts as infrastructure component library to foster reuse,
decrease development and integration time, as well as protect investments in the
INDENICA platform. At deployment time, the repository holds deployment
descriptors and environment configuration information enabling easy (re-)
deployment of VSPs and their components. Furthermore, the repository allows for
the transfer of relevant design and deployment time information to the runtime
environment. This allows runtime components, such as monitoring and adaptation
facilities, to take additional information about the deployed VSPs and their
infrastructure into account, facilitating greater control over the runtime
characteristics of VSPs and their environment.

In this prototype deliverable document we will briefly discuss the concept and
architecture for the Indenica Service Platform Infrastructure Repository, and provide
an overview of the current state of the prototype implementation, along with a
detailed usage guide for the provided tools.

INDENICA D2.3.1

2 Overview

The INDENICA service platform infrastructure consists of a number of components
that help to build and run virtual service platforms. It uses a messaging
infrastructure, providing a unified communication interface for all infrastructure
components. As shown in Figure 1, control interfaces provide for a unified
mechanism for a bidirectional communication with domain-specific application
services and components. The platform provides a publish/subscribe mechanism,
enabling complex communication pattern, and allows components to receive
information they are interested in. The infrastructure enables efficient handling of
large amounts of streaming data (messaging infrastructure), persistent storage of
relevant information and its retrieval (repository), as well as aggregation of online
and offline data.

—— e e e e e, e, r e, e, e, e, e e e, e e, e, e — e - - ————————— - — -

[Deployment Manager Repository

(war ((waz {(vas ()eee (man ()

Messaging Infrastructure

[Monitoring Engine Adaptation Engine]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

component interaction <=9

Figure 1: INDENICA Runtime Infrastructure Architecture Overview

The repository contains data about deployment configurations needed by the
deployment manager, which is responsible for instantiating and assembling virtual
service platforms. The monitoring engine combines online data about the domain-
specific runtime components with historical data to draw conclusions about the
system’s status. Based on this information, the adaption engine reasons about and
triggers reconfigurations. The rules and policies determining the monitoring and
adaptation engines are also stored in the repository. The repository will allow storing
the following artefacts, and will provide specialized storage and retrieval methods
that are tailored to the specifics of each of the artefact types:

* Deployment descriptors

* Monitoring rules

* Adaptation rules

¢ Platform instance configuration

* View-based modelling framework models (WP3)
* Variability engineering information (WP2)

INDENICA D2.3.1

3 Repository

The repository is the entity in INDENICA responsible for retention and retrieval of
persistent data. It manages data that needs to be persisted or be available for
retrieval using query mechanisms. The key design goals for the repository are
availability (provide a scalable architecture that is able to cope with high volumes of
data and frequent requests), data store abstraction (technological flexibility with
respect to the technology used for storing data in the backend), and domain-specific
data retrieval modes (different query methods tailored to the specifics of various
types of information managed by the repository).

e ™
Deployment || Monitoring

Descriptors || Rules Data Logs
. J
o 2

. ge

Data Store Abstraction o ‘o

og

. v
e R <t S <O)
Simple Mongo

Figure 2: Repository Architecture Overview

An overview of the repository architecture is shown in Figure 2. It is designed to be
data store agnostic, accommodating for different requirements of service platform
installations. The repository furthermore allows for the retrieval of stored data via
custom interfaces for different types of information (deployment descriptors,
monitoring rules, log data, etc.). The repository’s capabilities will range from storing
simple key/value entries for global configuration values to providing structured and
interconnected data formats for platform-specific variability models to performing
complex continuous event-based queries in reaction to monitoring events.

Such tailored interfaces in the form of domain-specific query languages, APIs, or
GUIs allow for efficient interaction with the repository. The data store abstraction
allows for the transparent use of multiple storage back ends, ideally suited for the
stored data and the particular application environment.

The data ageing component will be integrated into the next version of the
repository. It will allow annotating data with descriptions about their importance
and relevance over time, as well as how the data can be aggregated to provide
continuous operation. Based on that information, the data aging component will
schedule aggregation or even removal of less important data. This will be especially
useful for data logs.

INDENICA D2.3.1

4 Prototype Implementation

In this section, we present the current status of the prototype implementation of the
Service Platform Infrastructure Repository, along with a step-by-step guide to
creating a basic INDENICA runtime instance using the repository and provided tools.

The basic prototype infrastructure is realized using Apache Tuscany', a Service
Component Architecture’ (SCA) container, RabbitMQ?, an Advanced Message
Queuing Protocol* (AMQP) messaging system, Esper’, a Complex Event Processing
(CEP) engine, and MongoDB®, a document-oriented database. These technologies
have been chosen based on a careful evaluation of the repository’s requirements
and the current state of the art in database and data processing technology. As
mentioned in Section 3, the repository is designed for scalability, data store
abstraction and domain-specific data retrieval. In the current prototype
implementation, we have integrated a MongoDB database backend into the data
store abstraction for illustrative purposes. MongoDB'’s scalable and agile design is
well-suited for deployment in Cloud environments and provides ideal characteristics
for storing and querying high volumes of persistent data (e.g., event logs). Non-
persistent data with high volatility and time-critical online queries (e.g., required by
the INDENICA Monitoring Engine) are handled by Esper. The following usage guide is
based on an end-to-end use case that stores and executes monitoring and
adaptation rules for an exemplary service platform.

4.1 Usage Guide

In this section we provide a step-by-step guide for creating a basic instance of the
INDENICA runtime infrastructure using the Service Platform Infrastructure
Repository.

In order to create a new instance of the INDENICA runtime infrastructure, running
instances of RabbitMQ and MongoDB are required.

To guide the user through the steps necessary to create a runtime infrastructure
instance, a simple launch dialog can be invoked using:

sh launchConfiguration.sh

" http://tuscany.apache.org/

2 http://oasis-opencsa.org/sca

3 http://www.rabbitmg.com/

4 http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
> http://esper.codehaus.org/

6 http://www.mongodb.org/

INDENICA D2.3.1

e O O INDENICA - Main Selector
File

Select the form to launch:

[Environment Configurator v]

’ Launch .

Don't forget to connect to DB.

Figure 3: Configuration Launch Dialog

Next, a connection to the repository database must be established by invoking “File,
Connect to DB.”

8 O O INDENICA - Main Selector
0 e o DB
Populate DB Llaunch:
Exit ; .
_onfigurator ™

T

‘ Launch .

Don't forget to connect to DB.

Figure 4: Connect to Repository Database

The data entered in the connection dialog must point to a running MongoDB
instance in order to complete correctly.

Please enter your DB server informations:

address : | 192.168.56.101 ‘

port : [27017 ‘

| Exit | [Connect |

Figure 5: Establish Database Connection

After successfully establishing a connection to the database, an environment
configuration for a new infrastructure instance can be created by selecting
“Environment Configurator” in the dropdown list and clicking “Launch.”

10

INDENICA D2.3.1

| 8.0 0O Indenica - Environment Configuration |
File ?

Edit configuration for your environment:

Figure 6: Environment Configuration Dialog

To create a new environment configuration, select “File, New Configuration.”

8 00 Indenica - Environment Configuration

Connect to DB

New Configuration
Load Configuration
Exit

environment:

Figure 7: Create new Environment Configuration

In the following dialog, a name for the infrastructure instance to be created must be
supplied (in our case, “Samplelnstance”).

11

INDENICA D2.3.1

9.0 06 INDENICA - New Configuration |

insert the ID: | Samplelnstancel I

| Cancel | [oK |

Figure 8: New Environment Configuration Dialog

After confirming the creation of the new instance configuration, the environment
configuration is pre-populated with relevant configuration properties that need to be
provided by the user. Where appropriate, the values are set to factory default
settings, or contain usage information.

68 00 Indenica - Environment Configuration
File ?

Edit configuration for your environment:

Key String Value String

Platform Samplelnstance ‘ * I
droolsFileName file name for Drools engine. IT HAS TO BE IN src/main/resus ‘ _ |
policyDB adaptation configuration table —
adaptationDBpath adaptation configuration table

aiBinding_key outgoing events from ae to ai. syntax: <eventl>-<event2>

droolsPath src/main/resources/

eventRepositoryAddr IP address for p/s broker

meOBinding_key outgoing events from mi to me. syntax: <eventl>-<event2
eventsOutDBpath event configuration table for events to the adaptation interfa

melDs IDs for monitoring engines. <0>-<1>-...-<N>

aeO0Binding_key outgoing events from me to ae. syntax: <eventl>-<event2

aelDs IDs for adaptation engines. syntax: <0>-<1>-...-<N>

esperFile monitoring configuration table

eventsinDBpath event configuration table for events from the monitoring inte
aeQutputEvent adaptation engine standard output events. syntax: <eventl
monitorDBpath monitoring configuration table

| Save |

Figure 9: Environment Configuration Defaults and Usage Hints

Figure 10 shows an exemplary configuration for an infrastructure instance. This
configuration creates one Monitoring Engine (ME) instance, as well as one
Adaptation Engine (AE) instance and defines events that these components receive.

12

INDENICA D2.3.1

In a future version, we aim at providing a more visually appealing interface to
defining components and their interactions using a drag-and-drop approach.

6 00

Indenica - Environment Configuration

File ?

Edit configuration for your environment:

Key String Value String

_id 4f2169a6eea81462c6f04589

[Platform |Sampleinstance |
droolsFileName adaptationRules.drl

policyDB adaptationPolicies

adaptationDBpath adaptationPolicies

aiBinding_key events.adaptation.#

droolsPath src/main/resources/

eventRepositoryAddr 192.168.56.101

me0Binding_key events.mi.#

eventsOutDBpath eventsOut

melDs 0

ae0Binding_key events.Unavailability-events.Adaptation

aelDs 0

esperfFile monitoringRules

eventsinDBpath eventsin

aeOutputEvent AdaptationResult-Unavailability-OperationResult-xxxID
monitorDBpath monitoringRules

| Save |

Figure 10: Sample Infrastructure Instance Environment Configuration

The configuration can then be saved using the “Save” button on the lower right, and
the “Environment Configuration” dialog can be closed.

The next step in setting up an infrastructure instance involves defining concrete
events that the monitoring interfaces emit for consumption by the previously

defined monitoring engine.

In the launcher dialog, select “Events Incoming” in the dropdown box and click

“Launch.”

13

INDENICA D2.3.1

e 00 INDENICA - Main Selector

Select the form to launch:

[Events Incoming 3]

Launch

Connected to database: 192.168.56.101:27017
Now you can launch the forms!

Figure 11: Launch Incoming Events Dialog

The previously created environment configuration must be loaded in the incoming
events dialog.

To load an environment configuration, select “File, Load Configuration,” click
“Explore” and select “Simplelnstance.”

| ® O O INDENICA - Configuration Loader

Insert the configurations table name:

! eventsin ‘ Explore

Select the configuration to load:
@ eventsin

Il simpleinstance

| Cancel Load |

Figure 12: Load previously created Configuration

14

INDENICA D2.3.1

Please enter the information about events originating from the monitoring interface

Event Type: Il Available Events:

Key String | Object Type
Attributes: | Remove Event | | EditEvent |

Add Event

Figure 13: Incoming Events Dialog

Now, events originating from the monitoring interface can be created. Figure 14
shows an exemplary event type, ‘ServicelnvocationEvent’, and according properties.

15

INDENICA D2.3.1

Please enter the information about events originating from the monitoring interface

Event Type: | ServicelnvocationEvent Available Events:

| ServicelnvocationEvent

Key String | Object Type
Attributes: |timestamp Int

eventld String
currentStatus Int

| Remove Event | | EditEvent |

Add Event

Figure 14: An exemplary Monitoring Event Type

Event types and their settings are saved using the “Add Event” button on the bottom
of the dialog. For the sample instance, we will add a second event type,

‘ServicelnvocationFailureEvent,” as depicted in Figure 15.

16

INDENICA D2.3.1

Please enter the information about events originating from the monitoring interface

Event Type: lServicelnvocationFaiIureEvent Available Events:

| ServicelnvocationFailureEvent

Key String | Object Type
Attributes: ate | Remove Event | | EditEvent |

Add Event

Figure 15: ServicelnvocationFailure Event Type

The next step involves specifying adaptation events sent to the adaptation interface
in order to influence integrated service platforms. Selecting “Events Outgoing” in the
launch dialog opens the according dialog.

17

INDENICA D2.3.1

e 00 INDENICA - Main Selector
File

Select the form to launch:

[Events Outgoing v]

‘ Launch

Connected to database: 192.168.56.101:27017
Now you can launch the forms!

Figure 16: Launch the outgoing Adaptation Events Dialog

Again, the environment configuration must be loaded by invoking “File, Load
Configuration,” clicking “Explore,” and selecting “Samplelnstance.”

Events sent to the adaptation interface can be created similar to the incoming
events. For our sample instance, we will create two events representing a
notification about a healthy or unhealthy system state (“adaptation.SystemOK” and
“adaptation.SystemKQ”), as shown in the following two figures.

18

INDENICA D2.3.1

Please enter the informations about the events outgoing from your system

Event Type: | adaptation.SystemOK Available Events:

[adaptation.SystemOK

Key String ' Object Type
Attributes: |Unavailability It | Remove Event | | Edit Event |

Add Event

Figure 17: Exemplary Adaptation Interface Event

19

INDENICA D2.3.1

Please enter the informations about the events outgoing from your system

Event Type: | adaptation.SystemKO Available Events:

| adaptation.SystemkO

Key String | Object Type
Attributes: |Unavailability It | Remove Event | | EditEvent |

Add Event

Figure 18: Exemplary Adaptation Interface Event

After saving the outgoing adaptation interface events, we can now configure the
monitoring engine by selecting the according option in the dropdown menu in the
launch dialog.

20

INDENICA D2.3.1

e O O INDENICA - Main Selector
File

Select the form to launch:

Monitoring Engines v

Launch

Connected to database: 192.168.56.101:27017
Now you can launch the forms!

Figure 19: Launch Monitoring Engine Configuration

After loading the environment configuration by invoking “File, Load Configuration,”
clicking “Explore,” and selecting “Simplelnstance,” the specified Monitoring Engines
can be configured.

To configure Monitoring Engine 0, we select it in the “Engine ID” dropdown and
choose “Load.” Now, monitoring rules can be added, using the rules specified in the
“Events Incoming” dialog. The current prototype implementation supports rules in
the Esper Query Language’ (EQL). Currently, the monitoring rules are provided
manually, but the aim for a future version of the repository is to integrate this part
with the view-based modelling approach of WP3. Integration with WP3 will enable to
automatically generate monitoring rules from UML models and to build up a library
of reusable and composable monitoring rules.

Figure 20 shows an exemplary monitoring rule evaluating the availability ratio of a
monitored service by analysing successful and failed invocations over a period of one
day.

7 http://esper.sourceforge.net/esper-0.7.5/doc/reference/en/html/EQL.html

21

INDENICA D2.3.1

8 00 INDENICA - Monitoring Rules Interface

File Engine

Please enter the informations about the monitoring rules in your system

Engine ID: | Monitoring Engine 0 4| | Load | | Remove |
Available Rules: [Unavailability ¢] Available Input Events:
| Remove | | Edit | ServicelnvocationEvent
ServicelnvocationFailureEvent
ServiceTest
Rule Name: [Unavailability \
select
1-(
select count(invocations)
from
wp4. events’ .Event(even_tType='ServicelnvocatianaiIurgEvent') Outgoing Events:
.win:time(60*60*24.0) as invocations
)/
(Unavailability
select count(invocations)
from wp4. " events " .Event(eventType='ServicelnvocationEvent')
.win:time(60*60*24.0) as invocations
)) as Unavailability
from wp4. “events ".Event

| Reset | | AddRule |

Loaded configuration: Simplelnstance!

Figure 20: Exemplary Monitoring Rule

After saving the monitoring rule (using “Add Rule” on the lower right), we can
configure actions the AE should take in response to certain monitoring events by

invoking the “Adaptation Engines” configuration in the launch dialog.

22

INDENICA D2.3.1

e O O INDENICA - Main Selector
File

Select the form to launch:

| Adaptation Engines +]

Launch ’

Connected to database: 192.168.56.101:27017
Now you can launch the forms!

Figure 21: Launch Adaptation Engine Configuration

After loading the environment configuration by invoking “File, Load Configuration,”
clicking “Explore,” and selecting “Simplelnstance,” the specified AEs can be
configured.

To configure Adaptation Engine 0, we select it in the “Engine ID” dropdown and
choose “Load.” Now, adaptation rules can be added, using the event specified in the
ME configuration dialog. The current prototype implementation supports adaptation
rules in the Drools® rule language.

For the sample instance, we will create two simple adaptation rules, as shown in
Figure 22 and Figure 23.

8 http://docs.jboss.org/drools/release/5.4.0.Betal/drools-expert-docs/html_single/index.html#d0e2777

23

INDENICA D2.3.1

ile ngine

Please enter the informati about the ad

ptation rules in your system

Engine ID: [Adaptation Engine 0 :] [Load] [Remove]

Your Policies:

Name.Description:

[GT 0,1. When the value is more than 0.1 perform sample action.]

[cTo1

Event: import wp4.events.Event;

R Edit Poli
g]oba| wp4.adaptation.c p AdaptationEngi N [SMOvE] [hiosg

g

Condition:

A

ilable Events to M
Unavailability

Sevent : wp4.events.Event(((Double)get(‘Unavailability)) > 0.1)

Action:

System.out.printIn("--> DROOLS : System KO! currentStatus " +
Sevent.get('Unavailability'));

Event eventOut = new Event(); Available Output Events:
eventOut.setEventType("adaptation.SystemKO"); "
eventOut.set("Unavailability”, Sevent.get('Unavailability"); :g:s;::::':z::::gg
ae.notifylnterface(eventOut);)

Figure 22: Exemplary Adaptation Rule

24

INDENICA D2.3.1

e 00 INDENICA - Adaptation Rules Interface
File Engine

Please enter the informations about the adaptation rules in your system

Engine ID: | Adaptation Engine 0 +| | Load | | Remove |

Your Policies:
Name.Description: LT 0,01. When the value is less than 0.01 perform sample action. | LTO,01 v
Event: import wp4.events.Event; Remove | Edit Policy |

global wp4.adaptation.component.AdaptationEnginelmpl ae;

Condition: Available Events to Monitor:
Sevent : wp4.events.Event(((Double)get('Unavailability')) < 0.01) Unavailability
Action:

System.err.printin("--> DROOLS : System OK! currentStatus " + Sevent.get('Unavailability')
)
Event eventOut = new Event(); Available Output Events:
eventOut.setEventType("adaptation.SystemOK");
eventOut.set("Unavailability", Sevent.get('Unavailability"));
ae.notifyinterface(eventOut);

adaptation.SystemOK
adaptation.SystemKO

Reset | | Add Policy |

Loaded confi ion: Simplel e

P

Please use the 'ae.notifylnterface(Event eventOut);' to notify the Adaptation Interfaces!

Figure 23: Exemplary Adaptation Rule

The adaptation rules complete the environment configuration. A platform integrator
is now required to create the appropriate Monitoring Interface (Ml) and Adaptation
Interface (Al) for the integrated platforms to interact with the INDENICA platform. To
ease this step, we will provide for an infrastructure integration library, that allows for
the retention and reuse of the created integration interfaces. In the current
prototype implementation the infrastructure library is represented by java packages
‘indenica. [monitoring|adaptation].component’. In a future version, the
infrastructure library will be tightly integrated into the development and
configuration workflow.

The prototype deliverable contains exemplary Ml and Al implementations, that allow
for the integration of different kinds of platforms.

To invoke the created platform, a Tuscany configuration composite file is needed.
This configuration artefact will be generated by the View-based Modelling
Framework. In the current prototype implementation, this file has to be supplied
manually.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://indenica.eu/repository"
xmlns:hw=" http://indenica.eu/repository"
name="IndenicaRuntime">

<component name="ComponentInitializerComponent">
<implementation.java
class="indenica.deployment.component.ComponentInitializerImpl" />

25

INDENICA D2.3.1

<reference name="adaptationInterface"
target="AdaptationInterfaceComponent" />
<reference name="repository" target="RepositoryComponent" />
<reference name="platform" target="SimplePlatformComponent" />
</component>

<component name="MonitoringInterfaceComponent">
<implementation.java
class="indenica.monitoring.component.SimpleMonitoringInterfaceImpl" />
</component>

<component name="AdaptationInterfaceComponent">
<implementation.java
class="indenica.adaptation.component.SimpleAdaptationInterfaceImpl" />
<reference name="platform" target="SimplePlatformComponent" />
<reference name="repository" target="RepositoryComponent" />
</component>

<component name="RepositoryComponent">

<implementation.java
class="indenica.repository.component.RepositoryImpl" />

<property name="dbAddress">192.168.56.101</property>

<property name="dbPort">27017</property>

<property name="platform">SimplePlatform</property>

<property name="adminDB">adminDB</property>

</component>

<component name="SimplePlatformComponent">
<implementation.java
class="indenica.sample.SimplePlatformImpl" />
<reference name="monitoringInterface"
target="MonitoringInterfaceComponent" />
</component>
</composite>

Figure 24: Exemplary Tuscany Runtime Configuration

After saving the composite file in the ‘src/main/resources’ directory, the
completed infrastructure instance can now be started using:

java —-Jjar indenicalInfrastructure.jar \
indenica.deployment.Launcher <composite file name>

26

INDENICA D2.3.1

5 Conclusion

The Service Platform Infrastructure Repository takes a key role in the Virtual Service
Platform, providing global access to various types of information with diverse
requirements concerning storage and retrieval. In this document we describe the
interim version of the INDENICA Service Platform Infrastructure Repository
prototype, including documentation on its usage. The key design goals of the
repository are scalability, data store abstraction and domain-specific data retrieval
possibilities. We present the repository architecture, its main components, along
with a set of tools developed to support platform infrastructure configuration using
the Service Platform Infrastructure Repository. The demonstrated use case illustrates
in detail how the tools are utilized to administer configurations and rules for some
core components of the platform, the Monitoring Engine, Monitoring Interface,
Adaptation Engine, and Adaptation Interface. The current implementation builds on
state-of-the-art technologies (e.g., Tuscany, Esper, MongoDB) that have been
carefully evaluated and chosen to fulfil their particular purpose. The prototype in its
current form provides a solid basis for extensibility and further integration with
other parts of the platform that rely on the storage capabilities of the repository.
Future versions of the Service Platform Infrastructure Repository will be more tightly
integrated with View-Based Modelling (WP3) and Variability Engineering (WP2) to
provide support for their specific needs concerning data formats, consistency checks,
data ageing, notifications, and update mechanisms.

27

