
Engineering Virtual Domain

Specific Targeted Research Project:

Abstract

Creating domain-specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

deliverable we address this demand. We focus on how to

configuration options in service (platform) ecosystems using a variability modelling

language.

The focus is on developing a variability modelling language specific to the INDENICA

project. For this purpose, we analyze

categories, ranging from basic to INDENICA

expressiveness of existing modelling

concepts related to service

INDENICA variability modelling language

configuration options in service (platform) ecosystems.

Document ID:
Deliverable Number:
Work Package:
Type:
Dissemination Level:
Status:
Version:
Date:
Author(s):

Project Start Date: October

Open Variability Model

for

Engineering Virtual Domain-Specific Service
Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

deliverable we address this demand. We focus on how to describe customization

configuration options in service (platform) ecosystems using a variability modelling

The focus is on developing a variability modelling language specific to the INDENICA

project. For this purpose, we analyze variability modelling requirements of different

categories, ranging from basic to INDENICA-specific, discuss in detail the

expressiveness of existing modelling concepts, introduce advanced

service-based systems, and, finally, describe the concepts of the

INDENICA variability modelling language (IVML) to describe customization and

configuration options in service (platform) ecosystems.

 INDENICA – D2.1
 D2.1

 WP2
 Deliverable

 PU
 final
 1.0
 2011-12-31
 SUH, SAP, SIE, PDM, TEL, UV

October 1st2010, Duration: 36months

Open Variability Modelling Approach

for Service Ecosystems

Specific Service

5 / 257483

specific service platforms requires the capability of customizing and

configuring service platforms according to the specific needs of a domain. In this

customization and

configuration options in service (platform) ecosystems using a variability modelling

The focus is on developing a variability modelling language specific to the INDENICA

requirements of different

specific, discuss in detail the

advanced modelling

describe the concepts of the

to describe customization and

Approach

Version

1.0 31. January 2012 final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

Table of Contents ... 3

Table of Figures .. 5

1 Introduction ... 6

2 Demands for Variability Modelling in INDENICA ... 8

2.1 General Variability Modelling Requirements .. 8

2.2 Variability Modelling in Service-Based Systems .. 11

2.3 Requirements from Industry.. 15

2.4 Summary .. 16

3 Core Variability Modelling Concepts ... 20

3.1 Running Example ... 20

3.2 Basic Variability Modelling ... 21

3.3 Cardinality-Based Variability Modelling... 23

3.4 Non-Boolean Variability Modelling .. 24

3.5 Configuration References .. 27

3.6 Domain-Specific Languages ... 29

3.7 Summary .. 32

4 Advanced Variability Modelling Concepts ... 34

4.1 Service Ecosystems .. 34

4.2 Quality of Service and Service Level Agreements .. 36

4.3 Meta-Variability ... 38

4.4 Service Technology-Specific Extensions .. 39

4.5 Summary .. 41

5 The INDENICA Variability Modelling Approach ... 42

5.1 INDENICA Variability Modelling Core Language .. 43

5.1.1 Projects .. 43

5.1.2 Types .. 44

5.1.2.1 Basic Types ... 44

5.1.2.2 Enumerations ... 45

5.1.2.3 Container Types ... 45

5.1.2.4 Type Derivation and Restriction .. 46

5.1.2.5 Compounds .. 47

INDENICA D2.1

 4

5.1.3 Decision Variables .. 48

5.1.4 Constraints ... 50

5.1.5 Configurations .. 52

5.2 Advanced Concepts of the INDENICA Variability Modelling Language 53

5.2.1 Attributes ... 53

5.2.2 Advanced Compound Modelling ... 55

5.2.2.1 Extending Compounds ... 55

5.2.2.2 Referencing Elements .. 56

5.2.3 Advanced Project Modelling .. 58

5.2.3.1 Project Versioning .. 58

5.2.3.2 Project Composition... 59

5.2.3.3 Project Interfaces ... 61

5.2.4 Advanced Configuration .. 63

5.2.4.1 Partial Configurations .. 63

5.2.4.2 Freezing Configurations ... 64

5.2.4.3 Partial Evaluation ... 66

5.2.5 Including DSLs .. 68

5.3 Fulfillment of Requirements .. 69

5.4 Summary .. 73

6 Application of Concepts in the INDENICA Case Studies 74

6.1 Application of the Core Language .. 74

6.2 Usage of Advanced Concepts... 77

6.3 Overview on IVML Concepts used in INDENICA case studies 81

7 Conclusion .. 83

References ... 85

INDENICA D2.1

 5

Table of Figures

Figure 1: Running example using basic feature modelling. ... 22

Figure 2: Running example using cardinality-based feature modelling. 24

Figure 3: Running example with feature attributes and non-Boolean constraints. 25

Figure 4: Replicated sub-trees in the running example (model fragment). 26

Figure 5: Replicated sub-trees using feature cardinalities (fragment). 27

Figure 6: Running example with configuration references. .. 29

Figure 7: A DSL for configuring content sharing applications (fragment). 31

Figure 8: Example instantiations of the DSL in Figure 7 (fragment). 32

Figure 9: DSL extended by OCL constraints and primitive Java datatypes (fragment).

 .. 32

Figure 10: Fragment from the variability model of the Remote Maintenance case

study. .. 74

Figure 11: Simplyfied fragment from the WMS variability model............................... 75

Figure 12: Simplified fragment form the YMS case study. .. 76

Figure 13: Configuration of decision variables in the WMS case study. 76

Figure 14: Fragment of the compile time variability model from the Remote

Maintenance case study. ... 77

Figure 15: Fragment of the composed runtime variability model from the Remote

Maintenance case study. ... 78

Figure 16: Compound refinements in the WMS variability model. 79

Figure 17: Freezing configuration values in the WMS case study. 80

Figure 18: Combination of partial evaluation and freezing a configuration in the

WMS case study. .. 80

INDENICA D2.1

 6

1 Introduction

The main focus of work package 2 within the INDENICA project is the customization

of service platforms. As part of this effort, this deliverable addresses variability

modelling, variability modelling in service-based systems in general and open

variability modelling approaches for service ecosystems in INDENICA in particular.

This is of course related to the implementation of variability, which we addressed in

deliverable D2.2.1 initially, and which we will finalize in deliverable D2.2.2.

In this deliverable the modelling of variability in general as well as variability

modelling in service-based systems serves as a basis for determining the core

expressiveness of the INDENICA variability modelling language. This core variability

modelling language will be further developed and enhanced by extensions that arise

from the specific requirements of the INDENICA project. As a consequence, the

structure of this deliverable follows the distinction of core modelling aspects and

advanced variability modelling extensions.

In Section 2, we define the requirements for variability modelling in INDENICA. This

information is derived from multiple sources, including general variability modelling

requirements, demands for variability modelling in service-based systems and

feedback from the industrial partners in the project.

Section 3 discusses core variability modelling concepts. The focus of this section is to

analyse modelling concepts of different expressiveness with respect to their support

for service-based systems as required in the INDENICA project. The results of this

discussion will serve as a basis for the core of the INDENICA modelling language that

we will define in Section 5. The discussion will cover basic variability modelling using

Boolean elements and expressions, the introduction of cardinalities, the extension to

non-Boolean expressions, configuration references, and finally the integration of

domain-specific languages (DSLs). We will approach this discussion by investigating

the expressiveness of each concept. The investigation focuses on the modelling

elements introduced by the specific concepts and the different constraint and

operator types available for dependency management. A running example will

illustrate the various levels of expressiveness in variability modelling throughout this

section.

In Section 4, we discuss advanced variability modelling concepts. The focus of this

section is to provide an overview of additional extensions to core variability

modelling that are required by the INDENICA project. The results of this discussion

will serve as a basis for the advanced variability modelling concepts of INDENICA that

we will define in Section 5. These extensions will satisfy the additional requirements

that the INDENICA core variability language does not directly address. We will cover

issues like support for service ecosystems, Quality of Service (QoS) and Service Level

Agreements (SLA), meta-variability, and service technology-specific extensions.

Section 5 defines the INDENICA variability modelling approach. The investigation of

variability modelling concepts with different expressiveness in Section 3 serves as a

basis for the first part of this section. We describe a core variability modelling

INDENICA D2.1

 7

language that relies on our analysis of the required expressiveness. The second part

then describes the auxiliary features of the variability modelling language. This in

turn relies on the analysis given in Section 4.

Finally, Section 6 reviews the concepts of the INDENICA variability modelling

approach introduced in Section 5 from the point of view of the INDENICA case

studies. We will discuss the usage of individual language concepts in this section as

well as the actual coverage of the approach by the (preliminary) variability models

that were developed as part of the work on the use cases so far.

Further relationships to other INDENICA deliverables are:

- D1.2.1: Variabilities in the requirements model.

- D3.1: Variabilities in architectural models and in the view-based modelling

approach, instantiation of models and variable assets by generative

techniques

- D4.1: Configuration of deployment and monitoring.

- D5.2: Concrete variability points in the use cases and industrial platforms.

Comments on the relation to previous work:

- All analysis performed in Sections 2-4 have been performed exclusively as

part of the INDENICA project and were motivated by the project.

- The specific proposal for a variability-modelling approach developed in

Section 5 was derived specifically within and for the INDENICA project.

Relationships to previously developed variability modelling approaches exist.

They are further discussed in Section 5.

INDENICA D2.1

 8

2 Demands for Variability Modelling in INDENICA

In this section, we provide an overview of the main requirements that we could

identify for variability modelling in the INDENICA context. These requirements were

derived from several sources. Some requirements were already described on a high

level in the proposal document. Some requirements are implicitly stated in the

description of the INDENICA case studies in Deliverable D5.1. We will cross-reference

the case study requirements here in terms of footnotes. We will first consider

variability modelling in general as a starting point to derive basic demands for such

modelling approaches. The results of this consideration and analysis are described in

Section 2.1.

In Section 2.2, we will investigate the demands for variability modelling that arise in

the context of service-based systems in general, and, in particular, in the context of

the INDENICA project. This will also satisfy the high level requirements of the

proposal document.

In addition, we discussed variability modelling requirements with our industrial

partners. While these requirements are somewhat influenced by existing modelling

approaches and experiences in variability modelling, they should provide additional

insight. This will be described in Section 2.3.

2.1 General Variability Modelling Requirements

A variability model is an abstraction of all common and varying software assets, for

example, of a specific software product line. The model illustrates all commonalities

and variabilities, their relations and the rules and dependencies among them. The

activity of variability modelling aims at the definition of such a model using a specific

variability modelling approach. The variability model can then be used to define

product configurations by selecting valid variability combinations without any

knowledge about the actual implementation. In this section, we discuss general

requirements for variability modelling with a focus on the basic elements and

capabilities that are typically needed to define and to use a variability model.

A variability model defines the valid configuration space1 of a specific software

product line. These variabilities are then implemented in the artefacts. The

configuration space consists of a set of atomic and configurable elements. Each of

these elements represents a specific variability. These basic modelling elements can

be further described using additional elements, for example, configurable attributes

for each basic modelling element. All elements of a configuration space are basically

optional. In practice, the definition of constraints restricts this optionality, for

example, to alternatives from which at least on element must to be selected or

configured (we will discuss constraints in detail below). Determining a specific

configuration of such elements, leads to the configuration of the corresponding

software artefacts. In deliverable D2.2.1, we discussed several different approaches

1
 D5.1 acknowledges the general need for variability modeling and points to some specific aspects, which we will

discuss in this and the following sections.

INDENICA D2.1

 9

to variability implementation and the relation between model and artefact space.

Some examples of such basic modelling elements are features in feature modelling

[40, 65], variation points and variants in orthogonal variability modelling [58], and

decisions and decision values in decision modelling [24, 63].

An illustrative configuration space may be the definition of the configurable

elements of a car. We use a decision modelling notation for this definition. The

decision model of a car DMCar may be defined as a set of three decisions, namely the

driving system, the engine and the transmission. The transmission further has a sub-

decision gears that specifies the number of gears for a selected transmission (we use

“.”-notation to indicate a sub-decision):

DMCar = {driving_system, engine, transmission,

transmission.gears}

The possible values of decisions val(x) are defined with respect to the available

(physical) components of the modelled car. A customer can choose between a two-

wheel or a four-wheel driving system, a gasoline or a diesel engine, and a manual or

an automatic transmission. The transmission can have five to seven gears:

val(driving_system) = {two_wheel,four_wheel}

val(engine) = {gasoline,diesel}

val(transmission) = {manual,automatic}

val(transmission.gears) = [5,7]

A variability modelling language must support the definition of modelling elements

to represent all variabilities in the artefact space. This includes the definition of

modelling elements of different value types, e.g. enumerations (decision

driving_system) or integers (decision attribute transmission.gears) and

their possible values. We will further discuss details of the capabilities of variability

modelling approaches in Section 3.

An application engineer uses such a variability model to define individual (software)

product configurations2. A product configuration is a set of configured elements of

the configuration space that represents exactly one product. The corresponding

activity of defining a product configuration is called configuration process. The

configuration of an individual car using the decision model DMCar may lead to a

product configuration Conf Car1 specifying a four-wheel-drive, a gasoline engine and

a manual transmission with six gears:

Conf Car1 = (

driving_system = four_wheel,

engine = gasoline,

transmission = manual,

transmission.gears = 6

)

2
 D5.1, section 2.5.3: Platforms must be configured for different hardware and PLC configurations. D5.1, section

4.2.2: The result of the configuration process shall be a variability configuration model.

INDENICA D2.1

 10

A variability modelling language must support the definition of multiple and

individual product configurations on the basis of a variability model. The element

combination defined in such a product configuration varies from product to product

and, thus, has to be handled independently for each product configuration.

The definition of constraints3 restricts a configuration space. These restrictions may

be due to requirements, technical or implementation aspects. More precisely, the

constraints restrict the combination of configuration space elements. These

restrictions guarantee that the configuration of products using the variability model

yield valid product configurations. A product configuration is valid only if the

selected element combination does not violate any constraints. The intention is of

course that a valid product configuration can be translated into a valid product

implementation, i.e., results in a correctly working product. The configuration space

of the car may be restricted to have a four-wheel-drive only in combination with an

automatic transmission while an automatic transmission requires at least six gears:

driving_system == four_wheel requires

transmission == automatic

transmission == automatic requires

transmission.gears >= 6

Thus, the product configuration that we defined above would be invalid with respect

to these constraints. The solution is to reconfigure the product (configuration) to

either include an automatic transmission instead of a manual one or to change from

four-wheel-drive to a two-wheel-drive.

A variability modelling language must support the definition of constraints to restrict

the configuration space. This includes restrictions of the combination of configurable

elements and complex dependencies among the individual elements (and their

attributes). This capability is mandatory to provide a mechanism that guarantees the

definition of valid and, thus, planned product configurations. The definition of

constraints requires the support of different operator types, e.g. Boolean or

relational operators (see the example above). The available operator types typically

depend on the value types available for the definition of the configuration space.

The mapping of a valid product configuration to the artefact space leads to the

instantiation of a valid product. Different approaches exist to realize such mappings.

Schmid et al. [64] discuss different types of mapping between decision models and

artefact space. Czarnecki et al. [17] have the same discussion on different mapping

techniques for feature models. We described initially the mapping of valid product

configurations in deliverable D2.2.1 as part of the variability implementation. We will

continue this description in deliverable D2.2.2 based on the INDENICA variability

modelling language defined in this deliverable. In the car example, the mapping and

instantiation of the valid product configuration (we changed transmission to an

3
 D5.1, section 2.5.1: The configuration of the WMS system shall depend on the height and length of the high

racks. The amount of high racks has a direct impact on the WMS. D5.1, section 2.5.5: The predefined relation

between rack size and maximum weight per storage unit as well as between shape of the product, palette and

warehouse specification shall be considered. D5.1, section 5.1.2: Restrictions on yard jockey and dock

assignment strategies shall be considered.

INDENICA D2.1

 11

automatic one) results in a real-world car with a four wheel driving system, a

gasoline engine and an automatic transmission with six gears ready to drive.

The above discussion describes the general issues that are relevant when providing a

variability modelling language, especially in the context of INDENICA. A list of the

identified requirements can be found in Section 2.4 under "General Variability

Modelling Requirements".

2.2 Variability Modelling in Service-Based Systems

In this section, we discuss specific requirements regarding variability modelling in

service-based systems. Service Engineering has changed the development of

software systems. A service-based system is no longer considered as an independent

software product but provides local services and consumes other, maybe third-party

services. Thus, it can be considered to be part of a service ecosystem. Variability

arises naturally in these systems, e.g. as services can be easily exchanged or

modified. This imposes specific requirements on the variability modelling language.

In this section, we will discuss different aspects of variability in service-based

systems and derive resulting requirements with respect to variability modelling.

In service-based systems, different variability objects4 are relevant that may be

impacted by a variability model. A variability object is the part of the service

platform, service, or service-based application that is supposed to vary. The

variability relevant to variability objects in service-based systems must be defined in

a variability model. In deliverable D2.2.1, we identified and defined the following

variability objects relevant to an INDENICA platform:

• Service Platform Infrastructure: This is the basic platform implementation,

which cannot be further refined into specific services. This can be realized in

an arbitrary (non-service-oriented) way. Variability in the basic platform

implementation regards all basic functionalities, for example, user

authentication mechanisms or persistency.

• Technical Platform Services: These are services that are provided from the

technical platform. They enable functionality like the registration of services

or other infrastructure capabilities. There can be variability regarding those,

e.g., regarding the exact range of services or their exact behaviour.

• Domain-Specific Services: This includes any variability in domain-specific

services where a service is modified, augmented by additional functionality,

and otherwise adapted. In particular this may happen either while keeping

the interface or modifying the service interface as well.

• Service Composition and Processes: This includes all cases where the specific

composition of processes is modified. It encompasses in particular any

situations where a specific service is explicitly exchanged for another service

satisfying the similar interface, but behaving differently.

4
 D5.1, section 2.6 and 5.2.2.2: All services should provide variability to be tailored to the customer’s needs.

INDENICA D2.1

 12

• Service and Platform Deployment: This covers any form of variability that

influences the specific deployment of a service5 (e.g., not deploying, location

of deployment, parameterization, etc.).

A variability modelling language for service-based systems and service ecosystems

must support the definition of configurable elements appropriate to represent the

above variability objects and their variability. In Section 4.4, we will further discuss

possible solutions found in literature to represent these variabilities.

In deliverable D2.2.1 we also introduced different forms of variations. The following

forms of variations6 are rather generic, however, they get a specific meaning, as

described below, in the context of service orientation:

• Optional: A variability object may only be part of an installation under certain

circumstances. This is called optional variability. This might be a service, or a

specific aspect of the functionality of a service or of the underlying platform.

• Alternative: Sometimes it is important that one of several variability objects

is present, but the variation is in which of the objects to pick. This can be, for

example, one of several possible service realizations that adhere to the same

interface or alternative behaviours of a platform infrastructure.

• Multiple selection: Sometimes multiple options from a set of variability

objects can be selected.

A variability modelling language for service-based systems and service ecosystems

must support at least the definition of the above forms of variations. The definition

may either affect only a single variability object (e.g. an optional variability object) or

groups multiple variability object7 (e.g. a set of alternative variability objects). Thus,

in case of alternative and multiple selections, these forms of variations require the

definition of value ranges or arrays including cardinalities to represent the set of

selectable variants and the number of possible selections. Alternative and multiple

selection also require grouping of modelling elements, e.g. to define a set of

alternatives of services from which the selected variant must be configured

individually. The definition of arrays and the grouping of configurable elements also

support large-scale variability by organizing related variabilities into manageable

units.

Other important forms of variability in service-based systems are parameterization

and extension8. Parameterization may require the definition of an open-ended set of

parameters. Many existing variability modelling languages also provide a concept of

parameterization. However, in these cases there is typically a fixed set of possible

5
 D5.1, section 4.2.2: Generation of deployment descriptors and other configuration parameters based on

product configuration.
6
 D5.1, section 5.2.2: In the YMS case, the persistency mechanism is a classical optional selection while

connectivity and authentication are multiple selections. However, configuring an entire WMS topology (D5.1,

section 2.5.1) needs at least all three forms of variation.
7
 D5.1, section 2.5.1, 2.5.5, 2.5.6: Needed to describe warehouse topology. D5.1, section 5.2.2: Needed to group

variabilities for individual subsystems.

8
 Interface variability was also mentioned in D2.2.1 as a possible form of variation, however, we regard this

mainly as a form of variability implementation (as was appropriate in D2.2.1). In terms of modelling interface

variability this can be mapped to the forms of variability identified above.

INDENICA D2.1

 13

parameters. Thus, the addition here is strongly related to the next point: the concept

of extension. Extension9 means that new variations can be supported that are not

known at the point in time of defining the variability model. This is a typical aspect of

service-based systems and hence must be adequately supported. It is also strongly

related to the aspect of ecosystems, which we will discuss below.

Quality in service-based systems is typically specified as Service Level Agreements

(SLA) in terms of Quality of Service (QoS). QoS-requirements can be seen as a kind

of constraint on the behaviour of a service that prescribes actions and/or states of

this service that a service provider accepts and advertises to service consumers [34].

QoS may be expressed in terms of qualitative statements or quantitative (numerical)

statements. One example of QoS is the availability of a service, which may vary

according to the concrete selection of a service variant. For service availability a

qualitative statement may be “high” while a quantitative statement could be 99

percent. A SLA is a formally negotiated agreement between a service consumer and

a service provider or between service providers that transcripts the common

understanding about services, their priorities, responsibilities and service guarantees

concretizing individual QoS statements [25]. A concrete SLA may specify that the QoS

availability for a given service has to be greater than 90 percent.

A variability modelling language for service-based systems and service ecosystems

must support the specification of qualitative and quantitative properties10 describing

QoS for individual configurable elements. Especially for the treatment of quantitative

properties arithmetic expressions11 are useful. An example could be the overall

quality of a service to be computed from responsiveness and availability. Constraints

on QoS properties12 must be supported to express valid ranges and dependencies

among QoS. Constraints may be used (in combination with arithmetic expressions) to

map between qualitative and quantitative properties.

Integration and configuration of service platforms are core topics of the INDENICA

project for which in a concrete setting a large number of decisions has to be made.

Examples of such decisions are which technologies should be used for integration or

which services should be made available at which point in time (through

configuration). Making such decisions at a certain point of time during the software

development cycle typically fixes several cornerstones of a service-based system

which cannot be changed later. Two particular types of such decisions are 1) the

service technology used for integration which is in a concrete implementation

typically interwoven with the functional code of the services and 2) the point in time

9
 D5.1, section 2.5.3: Upgradability and extensibility of a WMS within a fixed timeframe.

10
 D5.1, section 2.5.2: QoS such as latency and throughput may determine some variabilities of a WMS. D5.1,

section 3.2.2: Minimal latency is essential for a WMS. Availability may be a specific variability in a WMS. D5.1,

section 4.1.1: Remote Maintenance Systems are created for environments with specific QoS requirements

which, thus, may impact the configuration of such a system.

11
 D5.1, section 2.5.2: Relation between size of goods and speed of conveyer system or speed of communication

system may be expressed in arithmetic formulae or as constraints. D5.1, section 2.5.4: Runtime variability

which depends on the rate occupancy indicator.

12
 D5.1, section 2.5.2: The type of goods handled by a WMS may influence the specific distances and, thus,

latency and throughput. D5.1, section 3.2.2: The operator may switch to high-availability. This leads to the

activation of AppFabric’s built-in high-availability caching option.

INDENICA D2.1

 14

when all decisions about a configuration space element must be made, the so called

binding time13. Service technology and the range of possible binding times may be

expressed as aspects of a configuration space element. Enabling the variation of

these two aspects greatly increases the flexibility of integrating and configuring

service platforms. We call this meta-variability, i.e. the systematic variation of

aspects of a variability which are usually considered as fixed.

A variability modelling language for the integration and configuration of service-

based systems must support the definition of meta-variabilities and their individual

properties as well as the impact of meta-variabilities, i.e. to bind them as part of the

configuration process. In addition, the restriction of meta-variability requires

constraints, e.g. to express that configuring the binding time of one configuration

space element restricts the binding time of a dependent configuration space

element.

Special requirements arise for variability modelling in service ecosystems. In the

context of the INDENICA project we can extend the notion of service ecosystems to

service platform ecosystems in which multiple different service platforms (or parts

of them) form an integrated and domain-specific platform. The characteristics as

well as the requirements for variability modelling in service ecosystems can be

transferred to service platform ecosystems. In service (platform) ecosystems each

platform holds its own variability model. The configuration of a domain-specific

platform requires the composition of these models14. The composition mechanism

must guarantee both the individual configuration of each (sub-) platform and the

valid configuration across platform boundaries. The latter requires the definition of

constraints among modelling elements of different variability models, which in turn

requires a clear identification of each modelling element with respect to its source

(the variability model of the respective platform). In addition, service platform

providers may pre-configure some variability, e.g. the number of services that a

specific customer is allowed to deploy. This results in a partial configuration15, which

must remain over the course of integration, and further configuration of the overall

domain-specific platform.

A variability modelling language for service platform ecosystems must be modular

and extensible to support the composition of multiple variability models as well as

their individual configuration and the configuration across variability model

boundaries. This facilitates the definition of constraints among modelling elements

of different variability models. Each modelling element must be clearly identifiable

with respect to its source (variability model). The modelling language also must

support partial configuration to enable pre-configurations of modelling elements.

13

 D5.1, section 5.1.3: Platform bundles as a way of implementing variability can be deployed, updated and

removed (even) at runtime. D5.1, section 4.2.2: Deployment descriptors are considered as one means of

variability, thus also deployment time binding is required.

14
 D5.1, sections 4.1.4 and 5.1.4: This may be part of the activities for combining the base platform with several

domain services and their individual variability models.

15
 D5.1, section 2.5: Combining and integrating base platforms to a whole VSP.

INDENICA D2.1

 15

The requirements we identified in this section serve as a basis for a detailed

discussion on advanced variability modelling concepts in Section 4. In this section we

will analyse various options of addressing these requirements. Section 2.4 contains a

full list of all requirements under "Requirements for Variability Modelling in Service-

Based Systems".

2.3 Requirements from Industry

While the previous subsections took a rather fundamental point of view with respect

to variability, this section emphasizes the industrial perspective. We gathered

requirements from the various industrial partners and used this as a basis for

evaluating the analysis given in the preceding sections and summarized in Section

2.4. By the very nature of this approach, the identified requirements overlap with

the ones described so far. However, in this subsection we will emphasize the

additional ones.

In terms of basic modelling facilities, the importance of having more modelling

elements than only Boolean variability availability has been unanimously raised.

Thus, enumerations16, numbers17, or strings18 can be regarded as a must. The

motivation for this was sometimes based on the need to represent Quality of Service

characteristics, but other aspects like business constraints also played a role.

The replication of features (feature cardinality) and constrained selection of

elements within a group (group cardinality) [20] are also mentioned as important. In

particular, the need to support the replication of sub-configurations19 has been

repeatedly mentioned (corresponds to feature cardinality).

Other aspects that impact the required basic expressiveness of the modelling

approach are:

• The capability to reference as part of the modelling language other (sub-)

configurations explicitly and thus to express references to entities explicitly.

• The capability to integrate higher-level configuration and generation

capabilities (e.g., in the form of DSLs) into the approach.

Some of the requirements are also related to the expressiveness of constraints.

Especially the need for being able to use high-level (abstract) requirements to

configure more detailed aspects and the need for numerical (computational)

constraints was repeatedly emphasized. The need for numeric constraints was

partially driven from the need to address Quality of Service aspects, but also partially

from the business aspects. In the context of multiple binding times, it was also

16

 D5.1, section 4.2.2: Examples for the Remote Maintenance system are different databases or communication

channels. D5.1, section 5.1.4: Examples for a YMS are the yard jockey state and its position.

17
 D5.1, section 2.5.1: For example size of the warehouse, amount of high racks, height and length in storage

units. D.5.1, section 2.5.5: Size, weight and shape of products in a warehouse. D5.1, section 5.1.4: Examples for

a YMS are the number of docks or the number of goods.

18
 D5.1, section 4.2.2: See the detailed options of the (pre)configuration of the Mobicents platforms as well as

server and communication settings of WMS or YMS servers.
19

 D5.1, section 2.5.1: Cardinalities and restrictions of multiple selection are in particular relevant for specifying

and configuring WMS topologies.

INDENICA D2.1

 16

emphasized that constraints might be binding-time-dependent and, thus, require

binding-time-specific treatment.

Some of the requirements that were brought up also concerned the ease of

performing configurations in practice. However, we expect that some of these

aspects can be handled through adequate tool support, independent of the specific

modelling approach. Thus, they do not need to be part of the variability

management approach per se. We summarize them here for the sake of

completeness:

• The need to be able to provide views (according to different criteria) of the

variability model to reduce the complexity a user has to deal with.

• The need was raised to work with defaults (e.g., in the form of business

profiles) to simplify the task of configuration.

Another category of requirements that was mentioned on various levels is the need

to be able to deal with several variability sub-models. This mostly overlaps with the

issue of ecosystems, which we addressed above. This issue was raised in several

forms:

• The ability to deal in an integrated manner with variability models that cover

multiple sub-systems20 (e.g., different types of services that come from

different backgrounds).

• The need to deal with the integration of legacy product lines, in particular, to

interface with their configuration processes.

• The need to decompose complex variability models to a set of sub-models

that can be handled more or less independently.

Some requirements were also more technological in nature. These concerned the

alignment of different technology layers or components to achieve a well-

orchestrated realization of the variation and the need to be able to influence specific

configuration aspects like technical platform services.

We will summarize the resulting requirements in the following section and also

outline the overlap with the requirements that we identified so far.

2.4 Summary

In this section, we discussed what we regard as key requirements for the variability

modelling approach in the INDENICA project. We gathered those requirements from

discussions of general demands in variability modelling, the investigation of demands

for variability modelling in the context of service-based systems and service

ecosystems, and the information from the industrial partners on their current (and

expected future) situation. We will now summarize the identified requirements for

future reference21:

20

 D5.1, section 4.2.2: For example subsystem variants in the Remote Maintenance system.
21

 Throughout the description of the requirements, we omit the phrase "the variability modelling approach

should support the... " for the sake of simplicity and readability.

INDENICA D2.1

 17

General Variability Modelling Requirements

G1 Definition of a configuration space that represents all variabilities as a

composition of basic modelling elements.

G2 Definition of additional modelling elements (attributes) that may refine the basic

modelling elements and allow representing additional aspects of variability.

G3 Definition of different types of value ranges, including non-Boolean variability.

G4 Definition of product configurations, that allow describing individual

configurations based on the definition of the configuration space.

G5 Definition of constraints to restrict the combination of elements defined in the

(unconstrained) configuration space.

G6 Definition of complex dependencies among the individual variability elements

(and their attributes).

Requirements for Variability Modelling in Service-Based Systems

S1 Definition of the variability relevant to service platform infrastructure, technical

platform services, domain-specific services, service composition and processes

and service and platform deployment. This requirement is an extension of the

general requirement G1.

S2 Definition of (at least) the following forms of variation: optional, alternative and

multiple selection.

Large Scale Variability22

S3 Grouping of related variability elements, e.g. to define a set of alternative

services from which the selected variant must be configured individually. This

requirement is an extension of the general requirement G1 and helps to

organize large scale variability.

S4 Definition of "arrays" to represent sets of cases that need to be configured while

the relevant configuration possibilities have the same structure.

S5 Definition of strong dependencies in the sense that general (abstract) decisions

lead to the configuration of (multiple) lower-level decisions.

Quality of Service

S6 Specification of qualitative and quantitative properties describing QoS for

individual configurable elements.

S7 Specification of arithmetic expressions to specify derived quality properties (an

example could be the overall quality of a service to be computed from

responsiveness and availability).

S8 Definition of Constraints on QoS properties to express valid ranges and

dependencies among QoS. Constraints may be used (in combination with

22

 Further requirements for large-scale development can be found under eco-systems, as they are specific to the

eco-system case.

INDENICA D2.1

 18

arithmetic expressions) to map between qualitative and quantitative properties.

This requirement extends the general requirements G5 and G6.

Meta-Variability

S9 Definition of meta-variabilities and their individual properties. This requirement

is an extension of the general requirements G1 and G2.

S10 Definition of the impact meta-variabilities have on the implementation process.

This requirement is an extension of the general requirement G4.

S11 Definition of constraints on meta-variabilities, e.g. to express that configuring

the binding time of one configuration space element restricts the binding time

of a dependent configuration space element. This requirement is an extension of

the general requirements G5 and G6.

Eco-Systems

S12 Composition of multiple variability models as well as their individual

configuration and the configuration across variability model boundaries.

S13 Definition of constraints among modelling elements of different variability

models including a clear identification of each element with respect to its

source.

S14 Partial configuration of variability models to enable pre-configuration and reuse

of existing variability models in new contexts.

S15 Extension of the configuration space by variabilities that have not been taken

into account previously (open variation). This can be seen as a special case of

S12, however, it goes beyond it by demanding that existing variations can also

be extended at a later point.

S16 Separation between local and global variability implementation reusing

variability models (modularity). In particular, this leads to the requirement of

variability interfaces.

Requirements from Industry

I1 Definition of non-Boolean variability. This is subsumed by requirement G3.

I2 Definition of cardinality (i.e., making – restricted – choices in groups of elements

and replicate complete groups in order to provide individual configuration

possibilities for the various copies. This can be seen as an extension to the

requirement S3.

I3 Referencing of other (configuration) elements.

I4 Integration with existing domain-specific languages. Due to its specialized

nature, we consider this as a low-priority requirement, but analyse this further

in Section 3.6.

I5 Automatic deduction of lower-level configuration choices from higher-level

configuration selections. This is subsumed by requirement S5.

I6 Definition of numerical constraints. This is subsumed by requirements G6, S7,

S8.

INDENICA D2.1

 19

I7 Definition of binding-time dependencies of constraints.

I8 Definition of different views (according to different criteria) of the variability

model to reduce the complexity a user has to deal with.

I9 Working with defaults, including complete default profiles describing defaults.

This may be handled as well on the tool level.

I10 Integrated configuration of modularized (and composite) product lines. This is

mostly subsumed by S12 and S15.

I11 Integration with legacy product lines. In particular, the harmonized

configuration of different product lines. This is mostly subsumed by S12 and S15.

The identified requirements serve as a basis for our discussion on core variability

modelling concepts in Section 3 and advanced variability modelling concepts in

Section 4. In addition, we will reconsider these requirements in our description of

the INDENICA variability modelling approach, which we will define in Section 5.

INDENICA D2.1

 20

3 Core Variability Modelling Concepts

The purpose of this section is to provide an overview of general variability modelling

concepts, which we will use as a basis to select the core concepts of the INDENICA

variability modelling approach. We will describe different categories of

expressiveness of modelling concepts. The expressiveness of the concepts will

increase over the course of this discussion. Our focus will be on the modelling

elements introduced by these categories and the different constraint and operator

types available for dependency management. We will further include existing

approaches that use the specific concept and compare the benefits and drawbacks

that come with the respective expressiveness. A running example will illustrate the

various levels of expressiveness in variability modelling throughout these sections.

We will start with an introduction of this example in Section 3.1.

The following sections will discuss five different levels of expressiveness from less

powerful to more powerful. Of course, different languages cannot exactly be put in

different levels and matched with different expressiveness of constraints. This would

actually form a two-dimensional matrix. Thus, our definition of levels is an

approximation.

3.1 Running Example

In this section, we introduce a running example which will be used throughout

Section 3 to illustrate the various levels of expressiveness in variability modelling.

The example will evolve with each level of expressiveness discussed in the following

sections.

The example will model the variability of the instantiation and deployment of a

content-sharing application. A content-sharing application allows its users to upload,

annotate, release and share content of various types. In this example, concrete

applications may differ with respect to:

• The supported content types such as text, video, audio, 3D content, or binary

(large) objects (BLOBs).

• The hosting infrastructure which consists of a) a web container being

responsible for serving the content and b) the database, which stores user

and content data.

• The deployment target, which may either be a traditionally hosted server or a

cloud environment. The cloud environment may be private, like a local

installation of the Eucalyptus23 cloud software or public, in this example we

will allow from the Amazon24 or Azure25 cloud.

23

 http://open.eucalyptus.com/

24
 http://aws.amazon.com/de/ec2/

25
 http://www.microsoft.com/windowsazure/

INDENICA D2.1

 21

Without going into functional details of the content-sharing application, the

variabilities introduced by content types, web container, database and deployment

target allow to derive a large number of different application instances. Whether we

can describe a specific set of applications at all or whether it is possible to state

individual details depends on the expressiveness of the languages used for modelling

variabilities and dependencies. In the following subsections, we will successively

augment the modelling of the running example with the restrictions and

dependencies below:

1) At least one content type must be present as otherwise the content-sharing

platform is useless.

2) To ensure acceptable quality of service, the maximum bit rate for video

content on the Tomcat web container is 128 kBit/s.

3) The combination of supported content types may be restricted based on the

capabilities of the web container or the deployment platform, e.g. due to

load problems only a limited number of content types may be available on

the traditional deployment target.

4) Some content types may be served by a separate web container in order to

configure a simple load balancing mechanism, for example 3D content should

be served by a JBoss server. As a further extension, a web container may be

configured to retrieve its content from a specific database.

5) Content types may be transformed and the result may be shared. Such

transformations should be configured in terms of configuration chains, such

as the textual representation of the audio track of a video. As

transformations may be resource-consuming and, thus, affect the

performance, on the traditional platform only simple and resource saving

implementations should be deployed while resource-consuming high-quality

transformations may be used on the cloud platforms.

The concrete notation used for illustrating the individual versions of the running

example will be explained as part of the discussion of the levels of expressiveness in

the following subsections.

3.2 Basic Variability Modelling

The simplest language, we will discuss, is a purely Boolean representation of

variability elements. This is the case in basic feature modelling. Also on this basic

level, we will restrict ourselves to binary constraints where one feature can be

mutually exclusive with another one or may require another one.

Feature diagrams were first introduced as part of the Feature Oriented Domain

Analysis (FODA) feasibility study in [40]. The intention of this method is the

identification of prominent or distinctive features. These features are attributes of

the system that directly affect end-users. They are user-visible aspects or

characteristics of the domain. The features define both common aspects of the

domain as well as differences among related systems in the domain. Thus, feature

modelling is a kind of variability modelling, whereas feature diagrams serve as a

communication medium between users and developers.

INDENICA D2.1

 22

Meanwhile, there exist a plethora of feature modelling approaches, each developed

for a specific purpose. At this point, we dispense with a detailed analysis of existing

feature diagram notations as this can be found in literature, e.g., in [65]. This

semantics also forms an input to our discussion of variability modelling described

here.

Feature diagrams consist of mandatory, optional and alternative features. They are

typically hierarchically organized, thus the selection of a sub-feature requires the

selection of its parent feature(s). Unlike FODA features diagrams which are trees,

today’s feature diagrams are in general single-rooted directed acyclic graphs (DAG),

because they represent graphically requires and mutually-exclusive relations among

features. However, newer approaches are not necessarily more expressive than

FODA. The FODA approach is capable of handling non-Boolean features like

“Horsepower”, while many feature diagram notations can only handle Boolean

features. Further, FODA makes use of textual “Rationales” to support the selection

process.

Figure 1 depicts the running example as a basic feature diagram. The content-sharing

application consists of an application part and a target platform part. For the

application the available content types are modelled as optional features, i.e. each of

the content types as well as arbitrary combinations may be selected. For the

container one may choose among the alternatives Tomcat , JBoss and IIS

(Microsoft Integrated Information Server). Similarly, the database may be MySQL,
Amazon S3 or Azure SQL . The target platform part is either Traditional or

Cloud . Cloud is further decomposed into private clouds (Eucalyptus) and

public clouds (Amazon or Azure).

The composition rules shown below the feature diagram restrict the set of valid

configurations. While the Traditional target platform requires MySQL (this

implicitly excludes the other alternatives), for Cloud target platforms MySQL must

Figure 1: Running example using basic feature modelling.

Application

Content-Type

Container

Database

Target platform

Text

Video

Audio

3D

BLOB

Tomcat JBoss

IIS

MySQL

Amazon S3

Azure SQL

Content-Sharing

CloudTraditional

private public

Eucalyptus

Amazon

Azure

Composition rules:

Traditional requiresMySQL, Cloud excludes MySQL, Eucalyptusrequires Amazon S3,

Amazon requires Amazon S3, Azure requires Azure SQL

Legend:

mandatory

optional

alternative

dependency

INDENICA D2.1

 23

not be selected as it is excluded. Eucalyptus and Amazon require the selection

of Amazon S3 (excluding the other alternatives) while Azure requires Azure
SQL. Additionally, we visualized the composition rules as dependencies in the

feature diagram (either textual rules or dependency arrows are sufficient while

visual dependencies are not part of the original FODA notation).

This basic feature modelling approach is not sufficient to model the restrictions listed

in Section 3.1. In particular a content-sharing platform is useless if no supported

content type is selected. Modelling such situations requires cardinalities, which we

will discuss in the next section.

3.3 Cardinality-Based Variability Modelling

In this section, we introduce cardinalities to the previously described modelling

approach. Two different types of cardinalities can be distinguished: feature

cardinalities and group cardinalities. Feature cardinalities facilitate multiple

instantiation of a feature, whereas group cardinalities describe how many sub-

features of a group of features can be selected.

The two concepts can be combined. This kind of grouping allows the multiple

selection of sub-features. This new grouping mechanism can be treated as a kind of

group cardinalities. These cardinalities specify a minimum and maximum number of

sub-features, which must be selected. Thus, alternatives can be modelled with <1-1>,

or-grouping with <1-n> group cardinalities.

A detailed analysis of these extensions can be found in [18].

Cardinalities can be seen as a specific kind of constraint. Besides this, no other type

of constraint directly "belongs" to this level. However, we will also introduce on this

level arbitrary Boolean expressions as a basis for constraints. This is obviously an

extension of requires and excludes relations, which can always be written as a binary

Boolean relation of the form A → B (A requires B) or A → ¬B (A excludes B). Thus,

arbitrarily complex Boolean constraints actually provide a generalization (they might

be simulated using requires and excludes, however).

INDENICA D2.1

 24

Figure 2 shows the extended running example with a feature group for content types

and a cardinality, which restricts the number of selected options for a valid

configuration, here that at least one content type must be selected. Further, the

Boolean constraint (BLOB or Video) → (JBoss or IIS) restricts that if

either a BLOB or Video -content is used than as container JBoss or IIS must be

used. Note, that in this special case, this can also well simulated with requires and

excludes relations, but our main point is the emphasis that in general people can

express their intentions more precisely. While now arbitrary Boolean constraints

(which encompass inclusions and exclusions) may be expressed, it is not possible to

state a basic QoS constraint such as: when selecting Tomcat the bitrate of a Video

is at maximum 128 kBit/s. We will discuss such non-Boolean constraints in the next

section.

3.4 Non-Boolean Variability Modelling

The example in the previous section showed that it would be good to be able to

describe variability not only in terms of Boolean variability, but also in other types

like integer, string, etc. This is summarized as non-Boolean. In [56], the authors

discuss that non-Boolean variability plays an important role in practice. In this

section, we will first introduce the concept of non-Boolean expressions in variability

modelling and the respective constraint mechanisms, then we discuss some

approaches and illustrate the use of non-Boolean expressions in our running

example.

In variability modelling, the definition of non-Boolean elements, like a configurable

element that assumes integer values, either requires the definition of a type or the

exact (range of) values that the element may assume. In both cases, each value

represents exactly one variant of a variability of the artefact space. Constraints

restrict the selection of these values to yield valid value combinations. The definition

of these constraints requires additional operator types, such as relational, arithmetic

or string operators. The operator types typically depend on the element types that a

variability modelling approach supports.

Figure 2: Running example using cardinality-based feature modelling.

Application

Content-Type

Container

Database

Target platform

Text

Video

Audio

3D

BLOB

Tomcat JBoss

IIS

MySQL

Amazon S3

Azure SQL

Content-Sharing

CloudTraditional

private public

Eucalyptus

Amazon

Azure

<1-5>

(BLOB or Video) → (JBoss or IIS)

INDENICA D2.1

 25

Non-Boolean elements and expressions are basic modelling elements in decision

modelling approaches [64]. Schmid and John [63] as well as DOPLER [24] support

decision types like Boolean, string, enumeration, integer, real, and additional sub-

ranges as well as set-based data types. Synthesis [67] and VManage [28, 46] also

support decision types like date and time. In [9], the authors discuss that non-

Boolean elements extend basic feature modelling, e.g., to define cardinalities among

feature sets or additional attributes to describe properties of a feature. Different

feature modelling approaches exist that support these extensions and the definition

of constraints among them [6, 7, 8, 20, 21, 39, 69, 74].

Non-Boolean elements and expressions enable the definition of multiple values for

each configurable element which yield a fine-grained structure of configuration

spaces. The definition of constraints not only restricts the combination of

configuration space elements but also facilitate the calculation of element values by

using arithmetic operators. The major drawback of non-Boolean expressions is their

analysability as Boolean expressions are NP-hard and non-Boolean expressions

extend this complexity to be undecidable [56].

Figure 3 depicts the extended variability model in order to express a non-Boolean

QoS constraint restricting the maximum bitrate of videos provided by a certain web

container. The Video variability is specified by the integer attribute Bitrate

which is used in the non-Boolean constraint relating Tomcat to the maximum video

bitrate of 128 kBit/s. Note that the variability model does neither specify the origin

of the value nor the binding time of the bitrate, i.e. the value might be provided

during configuration prior to runtime but it might also be left open as a runtime

variability to be obtained from a runtime monitoring service and to control runtime

reconfiguration of deployed web containers.

The constraints discussed so far represent expressions on the elements used in the

variability model such as variabilities, attributes or dependencies. A further (minor)

increase of the expressiveness could allow expressions on meta-model information

such as constraints on the cardinality of a variability. Let a.card be the cardinality

Figure 3: Running example with feature attributes and non-Boolean constraints.

Application

Content-Type

Container

Database

Target platform

Text

Video
Bitrate: int

Audio 3D

BLOB

Tomcat JBoss

IIS

MySQL

Amazon S3

Azure SQL

Content-Sharing

CloudTraditional

private public

Eucalyptus

Amazon

Azure

<1-5>

(BLOB or Video) → (JBoss or IIS)˄

(Tomcat ^ Video.bitrate ≤ 128)

INDENICA D2.1

 26

of the variability a. Then we can model that for an instantiation of the content-

sharing application to be deployed to a Traditional target platform at most two

content types may be selected:

Traditional ˄ Content-Type.card ≤ 2

The delivery of some of the content types such as 3D or BLOBs may be resource

intensive and impact the performance of the entire content-sharing application. An

approach to improve performance could be the following simple load balancing

mechanism: Serving the resource intensive content by separate subordinate web

containers which are deployed to different physical machines or virtual cloud

instances. Then, a request to such content would be delegated from the main

application web container to the subordinate web container. Modelling this load

balancing mechanism as configuration options using the variability modelling

approaches discussed so far, we would need to replicate the container variability as

a decomposition of 3D and BLOB. This is illustrated in the model fragment shown in

Figure 4 where replicated sub-trees are highlighted as gray areas.

Feature cardinalities as introduced in [19] can be considered as a modelling

alternative to reduce the number of replicated sub-trees. Figure 5 depicts a

modification of the running example in which multiple instances of the content type

feature can be defined. Each instance of the content type feature is flagged by an

individual string indicating the selected content type, such as Content-

Type(“BLOB”) . At a first glance, this modelling alternative seems to reduce the

number replicated sub-trees but it also implies that each (and not only selected

content types) may be served by an individual container. Further, the modelling in

Figure 5, which is aligned to the examples in [19], defines an unnecessary openness

Figure 4: Replicated sub-trees in the running example (model fragment).

Container

Tomcat JBoss

IIS

3D BLOB

Container

Tomcat JBoss

IIS

Content-Type

<1-5>

Container

Tomcat JBoss

IIS

Application

INDENICA D2.1

 27

stated in terms of the string attribute, i.e. not only strings representing valid content

types may be used. This may be avoided using enumeration types.

However, in both cases an extension of the variability modelling capabilities by

configuration references can help solving the problem of replicated sub-trees.

3.5 Configuration References

In this section, we introduce the concept of configuration references. In the first

part, we explain configuration references, the elements to define such references

and the corresponding dependency management. We will discuss existing

approaches that include configuration references in their variability modelling

concept. Finally, we will illustrate configuration references using the running

example.

A configuration reference is a link from a configurable element A to a configurable

element B specifying that the configuration capabilities defined by B become

available in the context of A. Primarily, linked configuration capabilities are made

available in an exclusive form, i.e. during the configuration process individual values

can be specified for each source of a configuration reference. However, linked

configuration capabilities may also be shared (as e.g. discussed in [4]). The concept

of referring to and, thus, reusing configurable elements is similar to object

references in object-oriented languages. There, (visible) capabilities of a class

become available through the object reference. The target of the object reference

may be a shared or an individual instance and even the reference may be shared

(static).

By defining a configuration reference, the constraints for referred configurable

element B naturally apply to the configuration capabilities, which become available

in the source A. Further, A may define constraints to restrict the use of the referred

configuration options within its own context. Additionally, the constraint language

may be augmented to provide specific operators for configuration references. For

Figure 5: Replicated sub-trees using feature cardinalities (fragment).

Container

Tomcat JBoss

IIS

Content-Type (String)

Container

Tomcat JBoss

IIS

Application

[1-*]

INDENICA D2.1

 28

example, in case that the variability modelling language supports inheritance of

configurable elements, a typeOf operator may constrain the concrete subtypes of B

which may be used in the context of A.

Bak et al. include configuration references in their Class Feature Relationships

(Clafer) approach [4]. The authors use abstract Clafers as a way of reusing parts of

feature models. These abstract elements cannot be selected or deselected as part of

a product configuration, unless they are extended by a concrete element. References

then define relations to such concrete elements while mapping constraints define

their individual configuration. Shared targets may explicitly be forbidden for

individual references in Clafer. Reiser introduces configuration links in his

Compositional Variability Management framework (CVM) [59]. CVM reduces the

complexity of real-world feature models by decomposition. A feature model in CVM,

thus, may be a composition of multiple (sub-) feature models. Configuration links

between (sub-) feature models allow the definition of how to configure a feature of a

target model depending on the given configuration of a source model. Boucher et al.

offer the definition of custom variability types that can be reused in a variability

model based on their Text-based Variability Language (TVL) [12]. Custom variability

types factor out recurring variable elements. Each feature that includes an element

of this custom type is able to configure its variant individually.

The benefits of configuration references in variability modelling are the reduction of

complexity and the relation between multiple, individually configured elements of a

configuration space. Configuration references reduce complexity by reusing

configurable elements in the configuration space. In addition, each new reference

allows the configuration of an individual instance that is exclusive for the referring

element. The major drawback of configuration references is their analysability.

Similar to non-Boolean expressions we introduced in the previous section, variability

models including configuration references are undecidable.

INDENICA D2.1

 29

Figure 6 shows configuration references to specify the configuration of the simple

load balancing mechanism introduced in Section 3.4. We apply the notation from

[73], i.e. we denote configuration references in light grey. Additionally, we highlight

the references in Figure 6 as additional arrows. The variability model in Figure 6

specifies now that 3D content or BLOBs may have individual web containers, which

are defined by the Container introduced as a decomposition of Application .

While configuration references provide more expressiveness than the previous levels

of description, there are still exist cases that cannot be fully described with this

expressiveness. Thus, sometimes the need for using domain-specific languages also

for variability modelling languages is voiced [73]. We will address this case in the

following section.

3.6 Domain-Specific Languages

The idea of a domain-specific language (DSL) as discussed in [29, 32, 33] is to target a

particular kind of problem in an intuitive way using concepts and elements, which

are well-known in the problem domain rather than general-purpose concepts. In this

section, we will discuss options using DSLs in variability modelling, which we

identified from literature. We will also illustrate the use of DSLs in the context of our

running example.

We identified the following strategies for using DSLs in variability modelling:

1. Use an existing domain-specific language and exploit some of the already

defined elements to realize variability modelling.

2. Define a domain-specific variability language to provide means for

expressing variability and product configurations in a problem domain.

Figure 6: Running example with configuration references.

Application

Content-Type

Container

Database

Target platform

Tomcat JBoss

IIS

MySQL

Amazon S3

Azure SQL

Content-Sharing

CloudTraditional

private public

Eucalyptus

Amazon

Azure

(BLOB or Video) → (JBoss or IIS)˄

Tomcat ^ Video.bitrate ≤ 128

Text

Video
Bitrate: int

Audio

3D BLOB

<1-5>

Container Container

INDENICA D2.1

 30

3. Extend a general-purpose language by a DSL which provides domain-specific

variability modelling concepts.

4. Extend a domain-specific language by concepts taken from a general-

purpose language to increase the expressiveness of the DSL.

5. Combine languages, in particular of DSLs, to improve reuse of existing

concepts in a more focused language.

6. Instantiate a DSL from a meta-model, e.g. a meta-DSL, which describes a

family of variability-enabled languages. This leads to languages with a

common core, e.g. to provide common mechanisms for traceability.

The two main approaches for realizing the extension and combination of languages

are (a) to derive a new combined language (called amalgamated approach in [36])

and (b) to apply loose coupling, e.g., using links (called separate-language approach

in [36]).

Several concrete approaches using DSLs for variability modelling are described in

literature. We will discuss some selected approaches in the following according to

the sequence of strategies listed above. Matlab / Simulink is a widely used tool in the

embedded systems domain. The authors in [10, 11] use Matlab / Simulink as an

existing domain-specific language and map concepts from a Matlab / Simulink model

to a variability model at the beginning of domain engineering and derive a

configured model as result of application engineering for final processing by Matlab /

Simulink. In [73] the authors discuss specific DSLs for describing the product

configuration of a fountain and an alarm system menu product line. In this work, the

authors exploit hierarchical nesting of DSL elements to constrain valid product

configurations. FAMILAR, as described in [1], is a domain-specific language for

feature modelling which particularly supports inter-model manipulations such as

merging. In [49], the authors discuss the extension of a general-purpose language by

a DSL. There, the authors extend the Meta Object Facility (MOF) [51] by variability

constructs using aspect model weaving. In several approaches such as [16, 35, 36,

75, 76], the Unified Modelling Language (UML) [53] as a general-purpose modelling

language is extended with variability modelling concepts. The reversed case, i.e.

extending a domain-specific language by a variability modelling language is

discussed in [36] where the authors enrich a train control language by their common

variability language (CVL) [55].26 The combination of several DSLs for variability

modelling is discussed in [73]. The authors combine one DSL for expressing the

logical structure of a product with a second language for specifying behavioural

aspects of the product. The application of a DSL as a language for describing DSLs is

the topic of [77]. In this work, the authors describe VML*, a family of languages for

variability management to derive variability-enabled languages for the entire

software development lifecycle exemplified by a requirements and architecture

modelling language.

26

 The CVL proposal is available to OMG members via the OMG website; non-members can obtain it, on request,

from Oystein Haugen, the proposal editor.

INDENICA D2.1

 31

Using DSLs in variability modelling requires also an appropriate constraint language,

i.e. concepts representing variability in a DSL as well as their properties must be

accessible for expressing constraints on them. Most of the publications discussed

above do not give details about the applied type of constraint language. Therefore,

we describe the literature findings for two DSL-based approaches. The authors of

[49] support required and (mutual) excluded variabilities, i.e. a type of constraint

language as discussed for basic variability modelling in Section 3.2. FAMILAR [1]

supports propositional logic, i.e. is based on Boolean constraints discussed in Section

3.2.

Some benefits of using domain-specific concepts in general as well as in variability

modelling are improved communication and understandability, increased

expressiveness, a concise language, a typically higher level of abstraction, better

scalability within the problem domain and an increased productivity [29, 32, 33]. In

contrast, proper design of a DSL is a difficult task which implies upfront investments

[32, 33]. Further, each DSL increases the existing zoo of languages aggravating the so

called ghetto language problem, i.e. staffing becomes difficult due to the fact that in-

house used DSLs are not known outside a company [29]. Moreover, combining DSLs

into an amalgamated language becomes complicated when elements and concepts

overlap and need specific approaches, as for example described in [14, 42].

In the remainder of this section, we will give examples for two basic strategies of

using DSLs in variability modelling, namely defining a DSL for variability modelling in

the context of our running example as well as extending a DSL by concepts from a

general-purpose language. We will not give examples for the remaining strategies

discussed above as we only want to provide some illustration using these examples.

We illustrate the approach of defining a specific DSL for variability modelling in the

context of the running example. In the sections above, the structure of the variability

models, e.g., shown in Figure 6 was mainly determined by the decomposition

hierarchy of configurable elements, i.e., a tree structure. We will rely on this tree

structure to derive a textual concrete syntax for a domain-specific variability

modelling language following the approach in [73]. For the presentation of the

examples we use a notation inspired by the examples in [73]. Figure 7 depicts the

grammar definition of a simple DSL for configuring content sharing applications.

Similar to the variability models shown in the sections above, the grammar allows

specifying the application part and the target platform (line 1). The application part

(identified by the string “Application”) is subdivided into content type, container and

database (line 2). Line 3 specifies that at least one and at maximum five content

types may be selected for a concrete application, namely text, video (which is further

1: ContentSharing –> ”Content-Sharing” App Platform

2: App -> ”Application” ContentType Container Datab ase

3: ContentType -> ”Content-Type” (”Text” Video ”Aud io” 3D BLOB)<1-5>

4: Video -> ”Video” “bitrate =” IntLiteral

5: …

6: IntLiteral -> -?(0..9)*

Figure 7: A DSL for configuring content sharing applications (fragment).

INDENICA D2.1

 32

specified by the bitrate in terms of an integer literal), audio, 3D and BLOB. The

translation of the remaining structure of the variability model to the DSL is

straightforward and not detailed here. Two example configurations which differ in

the selected content types are shown in Figure 8.

The DSL depicted in Figure 7 captures only the decompositions of the content

sharing variability model shown in Figure 6, i.e. it allows specifying all possible

configurations including those which are actually forbidden by constraints. To enable

constraints in our example, we can extend the DSL by OCL [52] or Alloy constraints

[38]. Further, we can extend the DSL by primitive data types e.g. taken from Java in

order to avoid repeated definitions of well-known language constructs. Figure 9

illustrates the extended DSL and also shows one of the constraints used in the

running example. By adding further language constructs taken from a programming

language also Turing-complete constraints can be realized as for example done in

DOPLER [24] by embedding Java fragments as constraints.

In this section, we have discussed the application of DSLs for variability modelling by

identifying six different usage strategies from literature. On the one hand, defining

own or extending existing variability modelling languages by required modelling

concepts can greatly extend the expressiveness of a variability modelling approach.

On the other hand, the analysability of variability models specified in DSLs suffers or,

in extreme cases, is not possible anymore, e.g. when constraints given in a Turing-

complete programming language are used. For the INDENICA variability modelling

language we believe that DSLs may be considered for carefully extending a core

variability modelling language, e.g. to realize several layers of expressiveness or to

enable domain-specific constructs in order to simplify the application of variability

modelling.

3.7 Summary

In the previous sections we discussed different categories of expressiveness of

variability modelling concepts, ranging from less powerful to more powerful. The

Content-Sharing

 Application

 Content-Type

 Text

 Video bitrate = 128

…

Content-Sharing

 Application

 Content-Type

 Text

 Audio

…

Figure 8: Example instantiations of the DSL in Figure 7 (fragment).

1: ContentSharing –> ”Content-Sharing” App Platform

2: App -> ”Application” ContentType Container Datab ase

3: ContentType -> ”Content-Type” (”Text” Video ”Aud io” 3D BLOB)<1-5>

4: Video -> ”Video” ”bitrate =” int

5: [Tomcat implies Video.bitrate <= 128]

6: …

Figure 9: DSL extended by OCL constraints and primitive Java datatypes (fragment).

INDENICA D2.1

 33

discussion of each category included the introduced modelling elements and the

dependency management capabilities. This provides a basis for our definition of the

core variability modelling language in Section 5.

The above discussion of different modelling concepts together with our discussion of

requirements in Section 2 showed that we will actually need a rather expressive

modelling language. Thus, non-Boolean variability is a must from the point of view of

industrial service-based systems. Configuration references as well as complex

settings seem to be often relevant and are thus likely candidates for inclusion in the

INDENICA variability modelling language. However, this must be done so that the

base concepts do not become unnecessarily complex. In addition, a way for

embedding DSLs must be found. Again, ease of use for the most standard issues is

important, so we expect to rely on a simple core language which is extended in a

way so that its use is not complicated for users who do not need the more advanced

features.

INDENICA D2.1

 34

4 Advanced Variability Modelling Concepts

The purpose of this section is to introduce additional variability modelling concepts

that arise from the specific requirements regarding variability modelling in service-

based systems. We discussed these requirements in Section 2.2. Thus, Section 4.1

will discuss required variability modelling capabilities in service ecosystems in

general. In Section 4.2, we will discuss Quality of Service (QoS) and Service Level

Agreements (SLA) and the variability modelling concepts used in literature in this

context. Section 4.3 will discuss meta-variability. This describes the variability of

aspects (e.g., binding time) that are often treated as constant in a variability

implementation. Finally, Section 4.4 will discuss extensions to variability modelling

that address on service-technology specific capabilities. We will discuss different

service technologies and describe the mapping of relevant aspects to modelling

elements.

4.1 Service Ecosystems

A service ecosystem is a large and non-trivial collection of different services that

interact and cooperate across technology- and business-boundaries [60]. In the

context of the INDENICA project we extend the notion of service ecosystems to

service platform ecosystems in which multiple platforms (or parts of them) form an

integrated and domain-specific platform. Key characteristics for variability modelling

in service ecosystems can be transferred to service platform ecosystems. These are

modularity and extensibility to support the integration of multiple variability models,

their individual configuration as well as the configuration across variability model

boundaries, and partial configuration to enable pre-configuration of modelling

elements.

In this section, we discuss concepts for extending the basic INDENICA variability

modelling language to satisfy the above characteristics and requirements of service

(platform) ecosystems. In literature, different approaches are described that deal

with composition and extensibility in variability modelling. Some of these

approaches focus explicitly on the integration of models or modelling elements of

different languages [27, 37]. These approaches are reasonable in the general context

of software ecosystems but in the INDENICA project, we focus on the use of a single

variability modelling approach. In the following, we will discuss specific modelling

concepts that focus on the composition and extensibility of homogeneous models

and modelling elements used in literature and conclude on relevant concepts for

variability modelling in service (platform) ecosystems.

Czarnecki et al. [20] propose a cardinality-based feature modelling approach in which

special leaf nodes act as extension points to connect additional feature models of

the same approach using feature diagram references. This extension mechanism

enables both the definition of constraints among features of the basic and the

connected models and the (valid) configuration across model boundaries. The

authors also introduce the notion of staged configuration meaning that certain

stakeholders may eliminate only some configuration choices of a feature model

INDENICA D2.1

 35

before (on the next stage) other stakeholders may configure the remaining

variabilities. This requires a specialization process that transforms a feature model

into another model, such that the latter model is a (specialized) subset of the former

one. Rosenmüller et al. [61] integrate feature models of different Software Product

Lines (SPLs) using composition models. This approach is based on object-oriented

concepts in which a class represents a single SPL while an object of a class represents

an instance of this SPL (the feature model and the model configuration respectively).

This allows for the definition of constraints among multiple feature models on the

level of composition model classes and instances. The latter defines restrictions

similar to configuration references introduced in Section 3.5. The information of such

a composition model serves as a basis for the automatic derivation of a configuration

interface that guides a user through the configuration of all SPLs. El-Sharkawy et al.

[26] use a variability modelling language based on [63] to model both, each SPL

separately and the composed SPL. The common language enables simple

composition of the homogeneous models. Namespaces ensure the clear

identification of variabilities in the composed model. This facilitates the definition of

constraints among modelling elements of the individual models.

In practice, additional problems and challenges of variability modelling in ecosystems

arise. Brummermann et al. [13] discuss the challenges of distributed evolution of

variability in information system ecosystems in the context of HIS GmbH. In this

scenario third-party vendors and customers may add configurations or override

(parts of) the base configuration that yield an unmanageable set of variabilities for

the company. The results are version- and update-conflicts when the base system

evolves. The authors address these conflicts by a formalism that supports structured

difference calculations to identify the effective changes that occurred in a new

version. Schmid [62] focuses on distributed software development and identifies

characteristics of a variability management approach particularly suited for such

development scenarios. He identifies a set of concepts introduced in Debian Linux [2]

and Eclipse package management [70] that are helpful for distributed variability

management: decomposition (assignment of responsibilities for different parts of a

variability model to different teams), version-based dependency (usage of version

information of the different parts to define what combinations are acceptable),

information hiding (explicit definition of the visibility of variability), variability

interfaces (extension points and their parameterization for extending base variability

models) and inversion of dependency (additional variability models or modelling

elements know the basic variability model that they extend, but not vice versa).

Based on the approaches for variability modelling in ecosystem we can sketch the

realization of the following specific requirements listed in Section 2.2:

• Composition of multiple variability models, open variation and modularity

(S12, S15, S16): Composition of variability models will be facilitated by

extension mechanism like the definition of extension points and variability

interfaces. This mechanism will allow the clear separation of base and

additional modelling elements (including the responsibility for the specific

parts) and enables the independent configuration of variability models and

the configuration across model boundaries.

INDENICA D2.1

 36

• Definition of constraints among composed variability models and clear

element identification (S13): We will use the concept of namespaces to

clearly identify each element of a composed variability model. This will also

facilitate the definition of constraints across variability model boundaries as

we can address each modelling element explicitly.

• Support for partial configuration (S14): We will include a mechanism to allow

both, partial configuration as well as the redefinition of such configuration.

The underlying concept will in particular support staged configuration. In this

concept, (partial) configurations will be inherited from a basic model to

provide a derived model, but remain reconfigurable to adapt the

configuration to specific requirements.

4.2 Quality of Service and Service Level Agreements

The quality of service provisioning in service-based systems is typically regulated by

Service Level Agreements (SLA). SLAs are formal specifications, which define the

conditions under which a certain service is provided by a service provider to a service

customer. The actual quality of service (QoS) may depend on various factors such as

the current request rate, network usage or the overall utilization of the service

hosting infrastructure. Maintaining a negotiated quality of service over time may

lead to changes in service parameters, the service infrastructure configuration, the

services themselves or the service composition.

In this section we discuss concepts for extending the basic INDENICA variability

modelling language from the point of view of service quality support. Below, we

discuss the specific modelling concepts used in literature in a) SLA modelling

languages and b) in product line variability modelling. Finally, we conclude on

relevant concepts for modelling quality in service variability models.

We compared the modelling concepts of nine specific SLA approaches, namely

Language for defining Service Level Agreements (SLAng) [43], High-Level Objective-

based Policy for Enterprises (HOPE) [57], Web Service Offering Language (WSOL) [71],

WebService Agreement (WS-Ag) [50], Composite SLA management (COSMA) [45],

Web SLA (WSLA) [41], Web Service Modelling Language (WSML) [68], QoS Modeling

Language (QML) [30], UML QoS profile (UM2QoS) [15] as well as the current UML

modelling extension for modelling and analysis of real-time embedded systems

(MARTE) [54]. With respect to the requirements given in Section 2.2, we identified

the following relevant concepts:

• Typed attributes are commonly used for expressing quality characterizations

in terms of qualitative statements (e.g. based on enumerations) or

quantitative (numeric) values. These attributes can be grouped using a

structured data type such as a record as e.g. done in SLAng [43] or MARTE

[54].

• Arithmetic expressions are used to express derived quality characteristics,

such as quality functions in HOPE [57] or combined metrics in WSLA [41]. The

Object Constraint Language (OCL) [52] is used in UM2QoS [15] and in MARTE

[54].

INDENICA D2.1

 37

• Logic expressions are used to specify constraints and restrictions on quality

attributes. Various types of logic are used in literature, such as first-order

predicate logic on quality attributes and derived quality characteristics in

COSMA [45], typed predicate logic in WSML [68] or UM2QoS [15] (using OCL

[52]), or even temporal logic as suggested in WS-Ag [50].

Quality specifications have been combined with variability modelling, e.g. to analyze

variability models and to determine the overall quality of a derived product. By

analyzing related publications, we identified the following concepts as being relevant

for the requirements derived in Section 2.2:

• Quantitative and qualitative attributes are a general requirement for the

integration of quality constraints into variability modelling [5]. Particularly,

qualitative real values are used to characterize the footprint of the product in

[66], reliability and energy consumption in [31] or cost and response time in

[48]. Instead of attributes, model annotations are used in [31].

• A further requirement for quality specifications in variability modelling is the

support of algorithms for calculating derived values [5]. One example of such

general-purpose algorithms are the analysis functions in [31] while the

authors in [48] rely on three specific aggregation operators, namely

summation, multiplication and min-max calculation.

• Accordingly, the constraints language can be enabled for quality attributes,

such as the probabilistic logic language in [31].

As an additional topic it might be beneficial to consider integration with goal-

oriented modelling (as applied in the INDENICA requirements approach in WP1) in

order to support traceability of requirements to the variability model. Such an

integration is discussed in [22]. There the authors use positive and negative

contributions to goals to derive quality properties of the variability model.

Based on the approaches for QoS specifications in SLA modelling and in variability

modelling we can sketch the realization of the following specific requirements listed

in Section 2.2:

• Specification of qualitative and quantitative QoS properties (S6): Qualitative

and quantitative QoS properties will be expressed as non-Boolean attributes,

i.e. qualitative properties as ordered enumerations and quantitative

properties by numeric (real) values.

• Constraints on QoS properties (S8): We expect that typed predicate logic

using OCL (more detailed BasicOCL or EssentialOCL) will be adequate for QoS

constraints in INDENICA fostering the use of well-known constructs and

standards. In contrast, probabilistic logic or even temporal logic would

seriously impact the analyzability of variability models.

• Arithmetic expressions for derived quality properties (S7): Will be realized by

defined operations in OCL (as selected for realization of S8).

INDENICA D2.1

 38

4.3 Meta-Variability

Meta-variability is the capability of systematically varying an aspect of variability that

is taken as a fixed part in a variability description. Examples include:

• Variability of variability description (e.g. modifying alternatives into options

or adaptivity constraints)

• Changing binding times

• Changing variability implementation mechanisms

In this section, we first illustrate meta-variability in the running example and then

describe extensions and concepts for supporting meta-variability. This provides a

basis for the design of the corresponding capabilities in the INDENICA variability

modelling language.

An important form of meta-variability is binding time variability. In the running

example this leads to an augmentation of each variability by information about the

latest point in time when the variability must be resolved. Let us assume that the

domain engineer defines that compile time and runtime binding are both valid

binding times for the Content-Type variability. When compile time is selected

during product configuration, the set of supported content types as well as the

related realization can be included into the product by the compiler. In contrast,

when selecting runtime, all possible implementations of content type functionalities

must be included at compile time. Further, additional functionality is required to

switch among the different Content-Type implementations at runtime.

A meta-variability can be understood as an additional variable attribute assigned to a

"main" variability. This additional attribute can by itself be defined, applied and

constrained. Thus, the basic concepts of the INDENICA variability modelling language

should be designed in a way that a natural extension to meta-variability is possible.

We will discuss the realization of the specific requirements defined in Section 2.2

below:

• Definition of meta-variabilities and their properties (S9): Before using a

meta-variability in a concrete variability model, the meta-variability and its

properties must be defined. This includes the concrete values a meta-variable

can take as well as its cardinality specifying whether the meta-variability is an

optionality, an alternative, a range, etc. As a meta-variability can be

considered as a variability attribute, we just need to foresee structured type

declarations indicating the new type as a meta-variability. As an example, the

binding time range mentioned above can be defined as a meta-variability

with values specified by an enumeration (compile time, deployment time,

startup time, runtime) with cardinality 1..*, i.e. at least one binding time must

be selected in a valid model.

• Definition of the impact of meta-variabilities (S10): The application of a

meta-variability happens like the binding of variabilities by selecting concrete

values for the attributes of variabilities during the configuration process. This

INDENICA D2.1

 39

must respect the specific type definitions and properties defined for

individual meta-variabilities.

• Definition of constraints (S11): The constraint language of the INDENICA

variability model should be capable of defining constraints which refer to

meta-variabilities so that bindings of variabilities and meta-variabilities can

be constrained or automated. As an example, postponing the binding time of

Content-Type to runtime should enforce that also container and

database can be bound at runtime.

4.4 Service Technology-Specific Extensions

In deliverable D2.2.1, we discussed different variability implementation techniques

from literature. These techniques are relevant to service-oriented development and,

in particular, to the INDENICA project. We introduced a categorization of the

techniques based on the variability objects they address (also shown in Section 2.2).

While Deliverable 2.2.1 focused on variability implementation, in this section, we will

discuss what can be learned from these techniques with respect to variability

modelling. The first part of this section discusses the approaches that include

variability modelling explicitly. In the second part, we consider the approaches that

do not model variability explicitly and discuss why additional capabilities are needed.

The subset of approaches that use an explicit variability model use rather basic

modelling capabilities (cf. Table 1). In these cases, the configuration space is typically

described using typical configurable elements like features. All approaches use

mandatory, optional and alternative forms of variations, while multiple selections

and cardinalities are only used by few. Hierarchical structuring of configurable

elements is inherent in the used modelling approaches (feature modelling or

orthogonal variability modelling). The definition of constraints mostly relies on

Boolean operators like requires and excludes.

An exception is the approach deployment / undeployment script, which additionally

uses annotations to define deployment information for each configurable element

[47]. The authors do not give any detailed information on how the deployment

information is actually modelled, but we assume that this requires additional

modelling elements like attributes and non-Boolean variability, e.g., strings to specify

deployment locations. This approach may also use non-Boolean operators to restrict

the deployment information defined in additional modelling elements. Again, this is

an assumption due to the lack of information on how deployment information is

actually modelled in this approach.

Table 1 summarizes the approaches to variability implementation with respect to the

used variability modelling elements.

INDENICA D2.1

 40

In deliverable D2.2.1 we identified approaches to variability implementation that do

not explicitly model variability. An example is the component service replacement

approach [44], which addresses variability in service composition and processes and

relies on QoS calculation and the exchange of one or more services to meet QoS

requirements at runtime. We discussed the modelling of QoS and SLA aspects in

detail in Section 4.2. The scoping and fine-tuning approach provided by SAP27 also

addresses variability in service composition and processes. The approach provides a

basic Business Adaptation Catalogue (BAC) and additional, predefined Business

Configurations (BC). Customers use the BAC to select the required base

functionalities and may overwrite parameters of the BC sets based on their specific

needs. We discussed the issues of pre-configuration and overriding existing

parameters, or more generally, overriding existing configurations in Section 4.1. The

context-aware deployment plan approach [3] facilitates service and platform

deployment variability. This approach does not use any specific modelling elements

27

 http://help.sap.com/saphelp_byd30/en/KTP/Software-Components/01200615320100003379/SAP_BBD/

SAP_BBD.html

R
e

fl
e

ct
iv

e
 V

a
ri

a
b

ili
ty

*

E
ve

n
t-

b
a

se
d

 C
o

m
p

o
si

ti
o

n
*

U
se

 P
la

tf
o

rm
 M

a
n

a
g

e
m

e
n

t

Se
rv

ic
e

s*

C
o

m
p

o
n

e
n

t-
b

a
se

d
 S

e
rv

ic
e

Im
p

le
m

e
n

ta
ti

o
n

*
*

C
la

ss
 W

ra
p

p
e

r*
*

Se
rv

ic
e

 C
o

m
p

o
si

ti
o

n

G
e

n
e

ra
ti

o
n

*
*

*

D
e

p
lo

ym
e

n
t

/

U
n

d
e

p
lo

ym
e

n
t

Sc
ri

p
ts

*
*

*
*

Configuration

Space Definition

Basic Elements x x x x x x x

Additional Elements x

Forms of

Variation

Mandatory x x x x x x x

Optional x x x x x x x

Alternative x x x x x x x

Multiple Selections x x x x x

Cardinality x x x x

Hierarchies x x x x x x x

Constraints
Boolean x x x x x x x

Non-Boolean x

****addresses variability in technical platform services

****addresses variability in domain-specific services

****addresses variability in service composition and processes

****addresses variability in service and platform deployment

Table 1: Summary of used modeling elements in variability implementation approaches

INDENICA D2.1

 41

or approaches, but could be combined with one of the approaches introduced in

Section 3.

The remaining variability implementation techniques allow arbitrary extensions to

the base functionality of the respective variability objects. Existing variability

modelling approaches are not well capable of describing this. This might be the

reason, why those variability implementation approaches that address this do not

explicitly use a variability modelling approach.

In summary, analyzing the capabilities of existing variability techniques for service

implementation does not provide a good basis for solving the issues. Basic

techniques are used, but more demanding aspects of variability modelling are

typically not addressed, rather the implementations work without explicit models. In

particular, the need to address arbitrary and unforeseeable extension to base

functionalities is a major challenge, as we discussed above. We defined this as an

essential requirement in the context of service and service platform ecosystems

(S15) in Section 2.2. Addressing these challenging issues and integrating them with

service platform technologies will be a major contribution of the INDENICA

approach.

4.5 Summary

In the previous sections we discussed additional variability modelling concepts that

arise from the specific requirements regarding variability modelling in service-based

systems. The discussion of each concept included the introduction of modelling

elements and dependency management capabilities. This provides a basis for our

definition of the advanced variability modelling language in Section 5.

The above discussion of additional modelling concepts together with our discussion

of requirements in Section 2 showed that we will actually need to extend the

expressiveness of our core modelling language. Thus, composition of multiple

variability models, constraints among composed models and support for partial

configuration is a must from the point of view of service ecosystems. Meta-

variabilities, the definition of their impact as well as the restriction of meta-

variabilities seem to be often relevant and are thus likely candidates for inclusion in

the INDENICA variability modelling language. Service technology-specific extensions

could not be identified, however, the need to address arbitrary and unforeseeable

extensions to base functionality is a challenging issue. This will be a major

contribution of the INDENICA approach.

The specification of qualitative and quantitative QoS properties requires non-

Boolean attributes as well as corresponding dependency management capabilities

including arithmetic expressions to define restrictions on QoS properties. This is

subsumed by the core variability modelling concepts that we introduced in Section 3.

INDENICA D2.1

 42

5 The INDENICA Variability Modelling Approach

In this section, we will describe the concepts of the INDENICA Variability Modelling

Language (IVML). In accordance to the previous sections, we will distinguish between

a core modelling language and an advanced modelling language that extends the

core language to satisfy the specific requirements that arise in the INDENICA project.

This distinction facilitates ease of use for the most standard issues in variability

modelling as it does not complicate the use of this language for users who do not

need the more advanced features. The concepts of the core modelling language are

based on the results of the discussion in Section 3. In this section, we discussed

different levels of expressiveness for basic variability modelling in INDENICA. The

core modelling language is extended by advanced modelling concepts that we

identified as prerequisites to effective and efficient variability modelling in service-

based systems and, in particular, in service (platform) ecosystems in Section 4.

The basic concepts of the IVML are related to approaches like the Text-based

Variability Language (TVL) [12], the Class Feature Relationships (Clafer) [4], the

Compositional Variability Management framework (CVM) [59], etc. However, we

decided to develop a different approach, based on decision modelling concepts, in

order to appropriately address the requirements identified in Section 2.4.

We will introduce a textual specification to describe the IVML concepts. This will help

to give a precise representation of the modelling concepts. The syntax, we use in this

section was developed as a basis for representing the concepts. The details of the

syntax may change considerably in the course of the project. Our presentation of the

IVML-syntax draws upon typical concepts used in programming languages, in

particular Java, and other modelling languages such as TVL [12], Clafer [4], the Object

Constraint Language (OCL) [52], or the UML [53]. The dependency management

concepts of the IVML mostly rely on the concepts of the OCL. We will adapt these

concepts as needed to provide additional operations required by IVML-specific

modelling elements, e.g. match and substitute operations for decision variables of

type string.

We will use the following styles and elements throughout this section to illustrate

the concepts of the IVML:

• The syntax as well as the examples will be illustrated in Courier New .

• Keywords will be highlighted using bold font.

• Elements and expressions that will be substituted by concrete values,

identifiers, etc. will be highlighted using italics font.

• Identifiers will be used to define names for modelling elements that allow the

clear identification of these elements. We will define identifiers following the

conventions typically used in programming languages. Identifiers of new

types will start with a capital letter to easily distinguish them from variables.

• Expressions will be separated using semicolon “; ”.

INDENICA D2.1

 43

• Different types of brackets will be used to indicate lists “() ”, sets “{} ”, etc.

This is closely related to the Java programming language.

• We will indicate comments using “// ” and “/* ... */ ” (cf. Java).

We will use the following structure to describe the different concepts:

• Syntax: this is the syntax of a concept. We will use this syntax to illustrate the

valid definition of elements as well as their combination.

• Description of syntax: provides the description of the syntax and the

associated semantics. We will describe each element, the semantics and their

interaction with other elements in the model.

• Example: the concrete use of the abstract concepts is illustrated in a (simple)

example.

In Section 5.1, we will describe the INDENICA variability modelling core language. We

will introduce the required elements and expressions to define a basic configuration

space including Boolean and non-Boolean variabilities. We will further describe the

dependency management capabilities of this language to restrict configuration

spaces. Finally, we will describe the definition of (product) configurations based on

configuration spaces.

In Section 5.2 we will describe the advanced concepts of the INDENICA variability

modelling language. We will introduce extensions that are required to satisfy the

specific requirements in the INDENICA project like the support for service-

ecosystems, for service technology and meta-variability.

Section 5.3 will provide a summary on how the requirements collected in Section 2

are implemented by the IVML, i.e. to which degree individual requirements are

realized by the language.

5.1 INDENICA Variability Modelling Core Language

This section describes the core language of the IVML. In this language, a project is

the top-level element that identifies the configuration space of a certain (software)

project. In terms of a product line, this may either be an infrastructure as a basis for

deriving products or a final product. In a project the relevant modelling elements will

be defined. We describe this in the first part of this section. In the second part, we

introduce the type system supported by the IVML. These types can be used to

declare different types of decision variables. The dependency management

capabilities to restrict the configuration space of a project will be described next.

Finally, we will introduce the configuration concept of the IVML, which enables the

definition of specific (product) configurations based on the configuration space

defined in a project.

5.1.1 Projects

In the IVML a project (project) is the top-level element in each model. This

element is mandatory as it identifies the configuration space of a certain software

project and, thus, scopes all variabilities of that software project. The definition of a

project requires a name, which simultaneously defines a namespace for all elements

of this project.

INDENICA D2.1

 44

Syntax:

project name {

/* Definition of the configuration space and
configurations. */

}

Description of syntax: the definition of a new project consists of the following

elements:

• The keyword project defines that the identifier name is defined as a new

project or, to be more precise, as a new configuration space.

• name is an identifier that defines the name of the new project and, thus,

the namespace of all elements within this project.

• The elements surrounded by curly brackets define the configuration space

of the new project.

Example:

project contentSharing {

/* This will define a new project for a content-sha ring
project. This is related to our running example in
Section 3. */

}

5.1.2 Types

In a project (cf. Section 5.1.1) different kinds of core modelling elements may be

used to both represent the variabilities and define a configuration space

appropriately. We will express these kinds as formal types in IVML, thus defining a

(strongly) typed language. We distinguish between basic types, enumerations,

container types, derived and restricted types and compound types. These types can

be used to declare or define concrete decision variables.

5.1.2.1 Basic Types

In Section 3, we argued that non-Boolean variability is a must for the core

expressiveness of the INDENICA language. Thus, the IVML supports as basic types

Boolean (Boolean), integer (Integer), real (Real) and string (String) with their

usual meaning. The names of the basic types are aligned to OCL [52]. These types

support the definition of basic variabilities, e.g. the Boolean type may be used for

modelling optional variabilities. In addition, types like Integer or Real provide a

basis for defining advanced variabilities, e.g. using an Integer to define a

quantitative property for Quality of Service (QoS) as described in Section 4.

INDENICA D2.1

 45

5.1.2.2 Enumerations

Enumerations allow the definition of sets of named values. This is used to describe a

set of possible resolutions of a decision.

Syntax:

enum Name1 { value 1, ..., value n};

enum Name2 { value 1=n1, ..., value n=nn};

Description of syntax: the definition of a new enumeration type consists of the

following elements:

• The keyword enum defines that the identifier Name is defined as a new

enumeration.

• Name is an identifier and defines the name of the new type.

• The identifiers surrounded by curly brackets are the concrete elements of

the enumeration. A specific element of an enumeration can be accessed

using the “.”-notation, e.g. Name1. value 1.

• Specifying concrete numeric values for elements of an enumeration

(value i =n i) turns the enumeration into an ordered enumeration. This

enables relations like greater than (>) or less than (<) and operations like

next (next) or previous (previous) on the values to be used.

Example:

enum Colors {green, yellow, black, white};

enum BindingTimes {configuration=0, compile=1,

runtime=2};

5.1.2.3 Container Types

The IVML provides two container types, sequences and sets. Sequences can contain

an arbitrary number of elements of a given content type (including duplicates), while

sets are similar to sequences, but do not support duplicate elements. These types

can be used to describe a number of possible options out of which several can be

selected at the same time. Elements in a container (both sequences and sets) can be

accessed by their position in the container using an index ([index]).

The IVML supports a set of operations specific for container types, e.g. adding or

appending elements to a container, deleting elements of a container, selecting

specific elements, etc. We will introduce the full set of operations in Section 5.1.4.

Syntax:

// Declaration of a new sequence and a new set.

sequenceOf(Type) Name1;

INDENICA D2.1

 46

setOf(Type) Name2;

/* Access to elements of a variable of a container type:
this holds for both sequences and sets. We will dis cuss
variables in Section 5.1.3. */

Name1 variableName ;

variableName [index] = value;

Description of Syntax: the definition of a container type consists of the following

elements:

• The sequenceOf and setOf keywords indicate the definition of a new

container of the respective type followed by the Type of the elements

contained in brackets.

• The identifiers Name1 and Name2 are the names of the new containers.

• Accessing a specific element of a container type (variable) requires the

specification of an index ([index]). An index is a positive integer value

specifying the position of an element in a container. Accessing a specific

position is only a valid operation, if this position has previously been set by

different means like the add function (the set of operations is introduced

in Section 5.1.4).

Example:

/* Definition of a new enumeration. "blob" means "b inary
(large) objects". */

enum ContentType {text, video, audio, threeD, blob};

/* Denotes types of contents supported by a system */

sequenceOf(ContentType) Contents ;

Contents basicContents = {text, audio}

5.1.2.4 Type Derivation and Restriction

The IVML allows the derivation of new types based on existing types. This supports

extensibility and adaptability as users may define their own types based on basic

types, enumerations or container types as well as on previously derived types. The

derivation may also include restrictions to the existing type, e.g. to restrict the

possible values of the new type to a subset of the values of the existing type. The

restrictions are defined by one or more constraints (we will discuss constraints in

detail below). Multiple constraints are implicitly combined by a Boolean OR. Thus, at

INDENICA D2.1

 47

least one constraint has to be satisfied by the new type. The constraints will be

defined in OCL style as described in Section 5.1.4.

Syntax:

typedef Name1 Type;

typedef Name2 Type with (constraint 1, ...,

constraint n) ;

Description of Syntax: the definition of a derived type consists of the following

elements:

• The typedef keyword indicates the derivation of a new type based on an

existing type.

• The identifiers Name1 and Name2 are the names of the new types.

• The identifier Type denotes the basic type from which the new type

(Name1or Name2) will be derived.

• The optional keyword with introduces a non-empty set of constraints,

surrounded by brackets, out of which at least one must hold for Name2. In

case of deriving Name2 from String the constraints may define regular

expressions.

Example:

/* Definition of a type "AllowedBitrates" which is a set
of Integers, i.e. a kind of alias for a complex typ e
definition. */

typedef AllowedBitrates setOf(Integer);

/* A new modelling type of the basic type integer t hat is
restricted to assume values between "128" and "256" . */

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

5.1.2.5 Compounds

A compound type groups multiple types into a single named unit (similar to structs

or records in programming languages or groups in feature modelling). This allows

combining semantically related decisions from which each element has to be

configured individually.

Syntax:

compound Name {

Type name1;

INDENICA D2.1

 48

...

}

Description of Syntax: the definition of a compound type consists of the following

elements:

• The compound keyword indicates the definition of a new compound type.

• The identifier Name defines the name of the new compound type.

• The set of elements surrounded by curly brackets defines the types of the

compound type. Each declaration of a typed element is separated by a

semicolon.

Example:

/* A new compound type for the configuration of dif ferent
(web) content. The content may vary in terms of nam e and
bitrate. "Content.bitrate" is the integer within th e
compound content. */

compound Content {

String name;

Integer bitrate;

}

5.1.3 Decision Variables

The types introduced in Section 5.1.2 can be used to declare (decision) variables

representing a concrete variability. A decision variable is an element of a project

(configuration space) that basically accepts any value of its type. Constraints may

further restrict the possible values by removing certain combinations of values from

the allowed configuration space. The value given to a decision variable defines the

variant of the represented variability.

In IVML a decision variable may either be declared with or without a default value

(this is an optional parameter). Decision variables with a default value can be further

configured by overwriting their (default) value at a later point in time. However,

overwriting the default value is not necessary.

Syntax:

// Declaration of a decision variable.

Type name1;

/* Declaration of a decision variable with a defaul t
value. The "valueAssignment"-expression will be des cribed
in detail below. */

INDENICA D2.1

 49

Type name2 = valueAssignment ;

Description of Syntax: the basic declaration of a new decision variable (excluding the

declaration of an optional default value) consists of the desired type (one of the

basic types, an enumeration, a container type, a derived or a restricted type, or a

compound type) followed by an identifier (name1) that states the name of the

variable.

Optionally, a default value can be assigned to a decision variable appending “=”

followed by a “ valueAssignment”- expression after the name (name2) of the

decision variable. The form of the “ valueAssignment”- expression depends on

the specific type of the declared decision variable:

• Basic types and Enumerations: an expression that yields a value of the

corresponding type and can be actually calculated, i.e., it either consists of

constants or the values of the variables are known.

• Container types: either an expression of the type of the container, which

can be statically evaluated, or a set of values separated by commas in curly

brackets after the name of the decision variable. The allowed values within

the curly brackets are determined based on the base type of the container.

• Compounds: either an expression of the type of the compound, which can

be statically evaluated, or a set of individual assignments, given in curly

brackets. Each assignment explicitly gives the field in the compound that

the assignment is made to, followed by a “=” and an expression of the

corresponding element type. Again this expression needs to be statically

evaluated.

• Derived type: the assignment follows the rules of the base type.

Example:

/* Declaration of a new variable of type integer wi th a
default value. */

Integer bitrate = 128;

/* Declaration of a new variable of type enumeratio n with
a default value (cf. Section 5.1.2.2). */

Colors backgroundColor = black;

/* Declaration of a new variable of type container
(sequence) with default values (cf. Section 5.1.2.3). */

INDENICA D2.1

 50

Contents baseContent = {text, audio};

/* Declaration of a new variable of type compound w ith
default values (cf. Section 5.1.2.5). */

Content complexContent = {name = "Text",
bitrate = 128};

5.1.4 Constraints

Constraints are used to define validity rules for a variability model, e.g. by specifying

dependencies among decision variables. The syntax of constraints in the IVML

basically follows the structure of expressions in propositional logic and, thus, is

composed of:

• Simple sentences, which represent constants, decision variables and types

which can be named by (qualified) identifiers.

• Compound sentences created by applying the operations to simple sentences

and, in turn, to compound sentences. A correct compound sentence requires

that the arguments passed to operations match the arity of the operation

and the types of the parameters or operations comply, respectively.

The operations available in IVML as well as the type compliance rules will be

discussed in the remainder of this section.

The constraints in IVML will mostly rely on the relevant part of the syntax as well as

on a large subset of the operations defined in OCL. Table 2 summarizes the

operations that are part of the IVML. In IVML we will use the constraint expression

syntax of OCL, but omit the OCL contexts used to relate constraints to UML

modelling elements. Two examples for such constraints are given below, one

propositional and one first-order logic example using a quantifier:

(10 < a and a < 20) implies b = a

If a is in the range (10; 20) this implies that b has the same value as a.

mySet->forAll(x|x > 100)

All elements in mySet must be larger than 100

Regarding collections, we will take over the OCL collections Set and Sequence ,

and exclude OrderedSet and Bag in the initial versions of IVML. The class of

collection operations used to construct iterator expressions (select , reject ,

collect) and, in particular, quantors known from propositional logic (exists ,

forAll , isUnique , etc.) impose specific challenges to the analysability of

variability models, but are required for variability modelling in complex realistic

settings.

In addition to the OCL operations listed in the bottom part of Table 2, the IVML

extends this by the following operations: regular expressions on strings and

operations for sets and lists. As syntactic sugar we will we provide index-based

access to a List using the usual array notation. Further, we will introduce a generic

INDENICA D2.1

 51

functionality for defining aggregation operations on entire lists: In addition to the

OCL operation collect, which applies a function to all elements in a set, we will

introduce the apply operation, which aggregates the result over a set using a

binary, commutative function and a neutral element.

We will also adhere to the (usual) operator precedence rules defined in the OCL

specification in Section 7.4.7 and 9.3.2, such as multiplication and division having

precedence over addition and subtraction.

Type conformance will be defined by the following set of rules inspired by OCL (cf.

OCL section 7.4.5):

• The basic types do not comply with each other, i.e. they cannot be compared,

except for Integer and Real.

• Enums, sets and lists are not compliant among each other.

• The application of the refines keyword induces a hierarchy of compounds

where the subtypes are compliant to their parent types, i.e. the parent type

may be replaced by each subtype.

• Derived types are compliant to their base type as long as no constraints are

specified.

The notation as well as the semantics of constraints in the IVML will be closely

aligned to the OCL. As we will not take over all elements of the OCL, particularly not

those specifying the application of constraints in the context of UML models, we will

reuse selected parts of the OCL syntax and semantics where applicable. The top part

of Table 2 summarizes relevant parts of the OCL serving as a basis for the syntax and

semantics of constraints in the INDENICA modelling language.

INDENICA D2.1

 52

5.1.5 Configurations

The IVML does not differentiate between a configuration space and specific

(product) configurations. Instead, a project can simultaneously describe or extend a

configuration space and define a configuration. However, typically a project will

provide a configuration space, while a different project may extend it, while

providing configurations information for the initially specified configuration space.

The set of decision variables and constraints of a project represent the set of all

28

 Unary negation operator.

Topic Contribution to IVML OCL Section

Basic types Boolean, Integer, Real, String 7.4

enums Definition of enums, element access will be

denoted by ‘.’ instead of ‘#’

7.4.2

let-expressions as defined in OCL 7.4.3

additional operations definition of named arithmetic expressions

using the def keyword

7.4.4

Attribute access as defined in OCL 7.5.1

Pathnames as defined in OCL 7.5.7

Tuples similar to compounds in IVML, also defining

the configuration of a compound

7.5.15

Set operations as defined in OCL 7.6.1-7.6.5

Concrete syntax selected parts, where applicable 9

Constraint semantics selected parts, where applicable 10

Formal semantics selected parts, where applicable Annex A

Operations

All types =, <>, != addition: == as an alias for = 11.5.2

Boolean not, or, xor, and, implies 11.5.4

Real -28, abs, floor, round, +,-,*, /, min, max, <,

<=, >, >=

11.5.1

Integer -9, +,-,*, /, abs, div, mod, min, max, <, <=, >,

>=

11.5.2

String size, toInteger, toReal, concat, substring;

addition for regular expressions: matches,

substitutes

11.5.3

Set, Sequence size, includes, excludes, count, isEmpty,

sum, product + min, max, avg, exists, forAll,

isUnique, any, one, collect, select, reject,

asSet, asSequence, addition: apply

11.6.1,

11.7.1, 11.9.1

Set union, =, intersection, including, excluding 11.6.2,

11.7.2, 11.9.2

Sequence union, append, prepend, insertAt,

subSequence, at, indexOf, first, last,

addition: []

11.6.5,

11.7.5, 11.9.4

Table 2: OCL parts taken over into IVML, changes and additions are given in italics.

INDENICA D2.1

 53

possible configurations. In addition, default values of decision variables as described

in Section 5.1.3 define basic configurations and, thus, do not need to be further

configured, but can be overwritten later as well. In addition, some values of decision

variables can be derived using constraints. Any configuration, independent of where

the values come from, must comply with the relevant constraints.

Configurations in the IVML do not require any specific or additional keyword. They

are simply given by variable assignments. We illustrate this concept by a simple

example.

Example:

/* A project that represents both a configuration s pace
and a configuration. The constraint implies a valid
configuration with a bitrate value between "128" an d "256"
and "content = text" (if no further configuration i s
done). */

project contentSharing {

enum ContentType {text, video, audio, threeD, blob};

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

ContentType content ;

Bitrate contentBitrate = 128;

contentBitrate = 128 implies

content = text;

}

5.2 Advanced Concepts of the INDENICA Variability Modelling

Language

This section describes advanced concepts of the IVML. We will describe how to

assign additional attributes to modelling elements. This allows describing certain

modelling elements in more detail, e.g. assigning meta-variability information as

described in Section 4. We then augment the compound types introduced in Section

5.1.2.5 by extension and referencing concepts. Extension concepts will also be

introduced for projects (cf. Section 5.1.1), which cover modularization aspects as

well as facilitating project composition. We will describe advanced configuration

concepts including partial configurations as well as “freezing” configurations. Finally,

we will describe a lightweight concept for including DSLs as part of a variability

model.

5.2.1 Attributes

In the IVML modelling elements can be attributed by further (orthogonal)

configuration capabilities, e.g. to express meta-variability such as binding times. An

INDENICA D2.1

 54

attribute in IVML is basically a decision variable that is attached to another modelling

element describing this element in more detail. Thus, an attribute may also have a

default value and may be restricted by constraints (cf. Section 5.1.4). The impact of

an attribute depends on the element it is attached to. In the IVML the following

modelling elements can be attributed:

• Decision variable: attributes that are attached to a decision variable only

describe this variable further. Depending on the type of the decision variable,

the attributes of the variable also describe its elements, e.g. the various fileds

of a compound variable. These fields may have additional attributes.

Changing the value of a decision variable attribute will not cause any

modification to elements outside the scope of the specific variable (as far as

they are not connected by constraints).

• Project: attributes that are attached to a project will affect all variables of this

project.

As the different elements may be nested, different values can be given for the same

attribute on the outer and the inner scope.

Syntax:

attribute Type name1 to name2;

attribute Type name3 = value to name4;

Description of Syntax: the definition of an attribute consists of the following

elements:

• The attribute keyword indicates the definition of a new attribute.

• The expressions Type name1 and Type name3 correspond to the

definition of a decision variable described in Section 5.1.3 while name1 and

name3 are the identifiers of the new attributes.

• The to keyword indicates the attachment of the new attribute on the left

side to the element (name4) denoted on the right side.

• name4 may be one of the elements described above to which the attribute

is attached.

• Optionally, a default value (value) can be assigned to the attribute by

appending a value expression after name3.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an attribute to the entire project.

INDENICA D2.1

 55

attribute BindingTime binding = compile
to contentSharing;

}

5.2.2 Advanced Compound Modelling

In Section 5.1.2.5 we introduced the compound types to group multiple types into a

single named unit. In this section, we will extend the modelling of compound types

by refinement and referencing concepts. Refinement allows extending existing

compound types by additional elements, yielding a new (extended) compound type.

Referencing enables the definition of references to other elements like other

compounds.

5.2.2.1 Extending Compounds

In the IVML a compound may extend the definition of a previously defined (parent)

compound. This is indicated by the refines keyword. Extending compound types is

similar to subclassing in object-oriented languages, i.e. parentType becomes a

subtype of compoundType and compoundType may define further decision

variables.

Syntax:

compound Name1 refines Name2 {

// Define additional elements.

}

Description of Syntax: the definition of an extended compound type consists of the

following elements:

• The compound keyword indicates the definition of a new compound type.

• The identifier Name1 defines the name of the new compound type.

• The refines keyword indicates that the new compound type (Name1) is

an extension of a previously defined compound type (Name2).

• The set of elements surrounded by curly brackets defines the additional

elements that make up the extensions to the inherited elements of

compound Name2.

Example:

/* A compound type for the configuration of differe nt
(web) content. */

compound Content {

String name;

Integer bitrate;

INDENICA D2.1

 56

}

/* A new compound type that refines the previous co mpound
type. "ExternalContent" will subsume all elements o f
"Content" and all additional elements defined below . */

compound ExternalContent refines Content{

String contentPath;

String accessPassword;

}

5.2.2.2 Referencing Elements

The IVML supports referencing of (other) elements, for example, other compounds

within a compound type. A reference allows the definition of individual

configurations of an (external) element for the referencing element without

including the external element as part of the referencing element explicitly. This is

indicated by the refto keyword used for the definition of a reference and the

refby keyword that indicates the configuration of a referenced element.

Syntax:

project name1 {

compound Name2 {

Type name3;

...

}

// Declaration of a new reference.

refto(Name2) Name4;

// Configuration of a referenced element.

refby(Name4). name3 = value ;

}

Description of Syntax: the definition and the configuration of a reference consist of

the following elements:

• The refto keyword indicates the definition of a new reference.

• Name2 defines the referenced element (type).

INDENICA D2.1

 57

• Name4 is an identifier and defines the name of the new reference. In the

IVML a reference is type, thus, the identifier for a new reference starts

with a capital letter.

• The refby keyword indicates the configuration of a reference (the

configuration of the referenced element respectively).

• Name4 is an identifier that defines the reference to be configured.

• The syntax for configuring a reference depends on the type of the

referenced element (see Section 5.1.3 for the syntax for assigning values

to variables of a specific type). In the case above, we use “. ”-notation to

configure a single element of a referenced compound type.

Example:

/* A compound type for the configuration of differe nt web
containers being responsible for serving web conten t. */

compound Container {

String name;

...

}

/* Another compound type for the configuration of
different (web) content referencing the "Container" type
to configure its individual web container. */

compound Content {

String name;

Integer bitrate;

// Declaration of a reference to the Container comp ound.

refto(Container) myContainer;

// Configuration of the above reference.

refby(myContainer).name = “ContentContainer”;

}

INDENICA D2.1

 58

5.2.3 Advanced Project Modelling

In Section 5.1.1, we introduced the concept of projects (project) as the top-level

element in each IVML-model. In this section, we extend the modelling capabilities of

the IVML regarding projects in three ways: first, we describe versioning of projects

that enables the definition of the current state of evolution of a project. This

concepts correlates with the second concept: project composition. This introduces

the capability of deriving new projects based on definitions in other projects and

explicitly excluding certain projects from the composition. As part of this version

information can be used. The third concept is project interface. The concepts of

project composition and project interfaces support effective modularization and

reuse of projects and, thus, configuration spaces.

5.2.3.1 Project Versioning

In IVML, projects can be versioned to define the current state of evolution of a

project (and the represented product line infrastructure). Evolution of software may

yield updates to projects. This can be described by a version. For defining a version,

the version keyword is followed by a version number. This must be the very first

element of the respective project. The version number consists of integer values

separated by “. ” assuming that the first value defines the major version, while

following numbers indicate minor versions. The level of detail of version numbers is

determined by the domain engineer.

Syntax:

project name {

// Definition of a version for this project

version Number. Number;

...

}

Description of Syntax: the attachment of a version to a project consists of the

following elements:

• The version keyword indicates the definition of a new version for the

project name.

• Number. Number defines the actual version of the project (here only two

parts).

Example:

project contentSharing {

version 1.0;

...

}

INDENICA D2.1

 59

5.2.3.2 Project Composition

The IVML supports the composition of different projects. This is closely related to

multi software product lines [61] and product populations [72]. Project composition

allows to effectively reusing existing projects by using these projects within other

projects. This also supports the decomposition of large variability models as

semantically related parts can be defined in individual projects. The complete project

then uses these (sub-) projects to define the combined project. In the IVML the

following keywords are introduced for project composition:

• import: this keyword indicates the use of a project. This keyword allows

using certain elements of a project by reference. If a project contains explicit

interfaces (see below), the specific interface, which is used, must be given.

• conflicts: this keyword indicates incompatibility among projects. All

projects (names) followed by this keyword cannot be used in combination

with the project that defines this conflict expression. This is also checked for

indirectly used projects.

The keywords import and conflicts, introduced above, can be combined with

version expressions using the with keyword and the version-information of a

project introduced in Section 5.2.3.1.

Syntax:

project name1 {

/* This introduces the project name2. Optionally, a
version may restrict name2 to a specific version as it
is shown below. */

import name2;

// Accessing elements of a project.

name2:: element ;

/* This introduces incompatibility of project name1 with
project name 3 of version greater than Number.Number . */

conflicts name3 with (name3. version > Number.Number);

}

Description of syntax: the definition of a new project composition consists of the

following elements:

• The keyword import indicates that the entities, which are made available

by the project or interface name2 will be available within the current

project.

INDENICA D2.1

 60

• For disambiguation the elements of name2 can be accessed using the “:: ”-

notation to express qualified names. If there is no ambiguity, they can be

used directly.

• The keyword conflicts indicates incompatibility of project name1 with

project name3.

• Optionally, version-expressions can be combined with the keywords

import and conflicts using the with keyword. This defines specific

versions of other projects to be imported into the current project or

conflicting with the current project.

• A version expression includes the version-information of a project (cf.

Section 5.2.3.1), a relation operator and a version number or a version-

information of another project. In addition, logical operators can be used

to concatenate simple version-expressions to define ranges of versions.

Example:

project application {

/* This will define a new project for content-shari ng
applications. */

String name;

}

project targetPlatform {

// This will define a new project for target platfo rms.

version 1.5;

String name;

}

project contentSharing {

/* This will define a new project for a content-sha ring
project importing two sub-projects "application" an d
"targetPlatform". The latter sub-project must be of
version "1.3" or higher. */

import application;

import targetPlatform
with targetPlatform.version >= 1.3;

INDENICA D2.1

 61

// Accessing the elements of the sub-projects.

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

5.2.3.3 Project Interfaces

By default, all elements defined in a project are visible when they are imported into

another project. In order to support effective modularization and reuse of variability

models, we introduce interfaces to projects. Interfaces reduce the complexity in

large-scale projects and provide means to automate the configuration of lower-level

decisions based on high-level decisions.

Interfaces in a project define all elements of a project, not part of the interface, as

private and, thus, make them invisible to the outside. This is indicated by the

interface keyword within a project. In order to access any elements they need to

be declared as parameters of the interface. This can be done by exporting existing

variables (using the export keyword) or by declaring new parameter variables. As a

special characteristic of the IVML, it is also possible to define multiple interfaces for

the same project. This is different from other variability modelling languages like the

CVL [55].

Importing a project (cf. Section 5.2.3.2) that includes interfaces allows the importing

project to access only the parameters defined in the interface. All other elements of

the project are not visible to the importing project.

Syntax:

project name1 {

/* Declaration of a (private) decision variable. Th is
variable is exported by the interface Name2. */

Type name3;

// Definition of a new interface.

interface Name2 {

/* Denotes the export of an existing decision varia ble
of the project name1. */

export name3;

...

}

INDENICA D2.1

 62

}

Description of syntax: the definition of a new project interface consists of the

following elements:

• The keyword interface indicates the definition of a new interface of the

project name1.

• The keyword export indicates the export of the following decision

variable name3.

Example:

project application {

// Declaration of (private) decision variables.

String name;

String appType ;

Integer bitrate;

// Definition of a constraint.

appType = "Video" implies bitrate = 256;

// This will define an interface for this project.

interface MyInterface {

export name, appType;

}

}

project contentSharing {

/* This will import the interface "MyInterface" of
project "application". */

import application::MyInterface;

/* Only the parameters of the interfaces are access ible.
"application::bitrate" yields an error. As long as the

INDENICA D2.1

 63

variable names are unambiguous, the fully qualified must
not be used. */

name = "myApp";

appType = "Video";

}

5.2.4 Advanced Configuration

In Section 5.1.5, we introduced the configuration concept of the IVML. In this

section, we will extend this concept to partial configuration. Partial configuration

allows the configuration of a project in terms of multiple configuration steps, each

configuring only parts of the project. The set of all configuration steps typically yield

a full configuration of the entire project. We will further introduce the concept of

persistent (parts of) configurations. We call this “freezing”. Freezing (parts of)

configurations defines these parts to be persistent. Persistent parts cannot be

changed anymore in further configuration steps. Finally, we will describe how (parts

of) configurations can be evaluated independently from other parts of the

configuration. This allows deriving additional configuration values based on existing

configurations using the constraints and value propagation.

5.2.4.1 Partial Configurations

The IVML supports partial configurations. Partial configuration allows the

configuration of a project in terms of multiple configuration steps, each configuring

only parts of the project. The set of all configuration steps typically yields a full

configuration of the entire project. The configuration of a part of a project may also

be reconfigured by the next configuration step (cf. the concept of default values,

which we introduced in Section 5.1.3). For example, a service provider may define a

(pre-) configuration of the provided service, while a service consumer may

reconfigure his service to satisfy his specific needs.

Partial configuration in the IVML is a straight-forward consequence of the concepts

introduced so far. We illustrate this concept by a simple example.

Example:

project application {

/* This defines a new project for content-sharing
applications including the (pre-) configuration of the
configuration element. This is also the first
configuration step.*/

String name = "Application";

}

project targetPlatform {

INDENICA D2.1

 64

/* This defines a new project for target platforms
without any configuration. */

String name;

}

project contentSharing {

/* This defines a new project for a content-sharing
project and imports two sub-projects "application" and
"targetPlatform". */

import application;

import targetPlatform;

/* This is the second configuration step, including the
re-configuration of the name-element of the sub-pro ject
"application" and a configuration of the name-eleme nt of
the sub-project "targetPlatform". */

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

5.2.4.2 Freezing Configurations

In the previous section we described the concept of partial configuration. This

included the possibility to re-configure existing (pre-) configurations. Although re-

configuration is reasonable in some cases, e.g. to modify a given configuration to

satisfy an individual need, at the end we desire a persistent configuration to define a

specific product. For example, service consumers should not be able to reconfigure

some parts of a configuration defined by a service provider.

We introduce the concept of “freezing” configurations. This is indicated by the

keyword freeze. Freezing configurations define the current (partial) configuration

to be persistent. Persistent configurations cannot be changed anymore in the course

of the configuration. Excluding elements of a configuration from being frozen, e.g.

freezing only some elements of imported projects or a compound type, the but

keyword can be attached after a freeze-expression. All elements followed by a but-

expression will not be frozen.

Syntax:

project name1 {

// Definition of new compound type

INDENICA D2.1

 65

compound Name2 {

Type name3;

Type name4;

}

/* Declaration of a new decision variable of the ab ove
type */

Name2 name 6;

/* Freezing the configuration of the decision varia ble
except element name4. */

name6.name 3 = value 1;

freeze {

name6;

} but (name6.name 4)

}

Description of syntax: the definition of persistent (parts of) configurations consists

of the following elements:

• The keyword freeze indicates that all elements with their current values

within the following curly brackets are persistent.

• Optionally, the keyword but indicates a set of elements that is excluded

from being persistent. All elements of this set can be further configured.

The but-expression may also include wildcards (*) which are necessary

especially in large models. Attaching a wildcard to an element, e.g.

name6. * , yields all elements of name6 to be excluded from being frozen.

Example:

project application {

/* Definition of a new compound type for the
configuration of the content type of an application . */

compound ContentType {

String contentName;

Integer bitrate;

INDENICA D2.1

 66

}

// Declaration of a decision variable of the above type.

ContentType appContent;

/* Definition of the content name to be persistent. The
required bitrate for this content may be configured as
part of the configuration of the container type for this
content. */

appContent.contentName = "Text";

freeze {

appContent;

} but (appContent.bitrate)

}

5.2.4.3 Partial Evaluation

The IVML provides a concept for the evaluation of configurations. This is indicated by

the keyword eval. At the end of a project definition an implicit eval occurs. The

explicit invocation of eval can be used to structure the definition of the variables

and thus reduces the search-space during constraint-evaluation. eval-blocks are

evaluated inside-out before the project itself is evaluated. eval-blocks on the same

nesting level do not imply any evaluation sequence.

Syntax:

/* Evaluate a constraint that defines the relation between
two variables of the same type. This leads to the
assignment of the variable values to the unassigned
variable upon exit of the scope of the eval-stateme nt. */

eval {

name1 = name2;

}

Description of syntax: the evaluation of a configuration requires an eval-statement

using the keyword eval followed by curly brackets.

Example:

project application {

/* Definition of a new compound type for the
configuration of the content type of an application . */

compound ContentType {

INDENICA D2.1

 67

String contentName;

Integer bitrate;

}

// Declaration of a decision variable of the above type.

ContentType appContent;

/* Definition of the content name and bitrate. This
configuration is evaluated explicitly to minimize t he
search space. */

eval {

appContent.contentName = "Text" implies

appContent.bitrate = 128;
}

}

project targetPlatform {

/* Define a new project for target platforms withou t any
configuration.*/

String name;

Integer bitrate ;

}

project contentSharing {

/* Define a new project for a content-sharing proje ct
importing two sub-projects "application" and
"targetPlatform".*/

import application;

import targetPlatform;

/* This constraint restricts the bitrate of the tar get
platform to be equal or greater than the bitrate of the
application content. The bitrate of the target plat form
can be derived from the bitrate of the application
content: "targetPlatform::bitrate = 128". At the en d of
a project definition an implicit evaluation for the
whole project is done. */

INDENICA D2.1

 68

targetPlatform::bitrate
>= application::appContent.bitrate;

}

5.2.5 Including DSLs

The IVML includes a lightweight concept for including domain-specific languages

(DSLs) as part of the variability model. This supports situations, in which the

variability may be expressed more intuitively or more naturally using DSLs.

DSLs can be embedded in IVML in terms of external language sections similar to

inline assembler code in higher languages. The embedded DSL code is preprocessed

in order to consider actual decision values during DSL evaluation, passed to a DSL-

specific tool for evaluation and the result of the evaluation is considered as part of

the actual IVML model, which triggered the evaluation. The evaluation result is

interpreted as a part of the final IVML description.

Syntax:

DSL(stopString , prefix , dslInterpreter)

// here goes the DSL

DSL(stopString)

Description of syntax: an external language section for a DSL is introduced by the

keyword DSL. The parameters of the opening DSL keyword are:

• The stopString identifier is a string used for uniquely identifying the end

of the DSL in combination with the DSL keyword. The part between the

opening DSL keyword (excluding its parameters in parentheses) and the

closing DSL keyword (marked by the stopString) is not analyzed by the

IVML tools but passed to an external DSL interpreter for evaluation.

• The prefix identifier is a string identifying a DSL-specific prefix for IVML

identifiers denoting decision variables. When passing the DSL code to the

DSL specific tools, all occurrences of decision variables marked by the

prefix are replaced by actual values for the individual decisions.

• The dslInterpreter identifier is a string containing, for example, a file

name or an URI specifying the concrete DSL tool which is responsible for

evaluating the instantiated DSL code, i.e. after substituting occurrences of

decision variables.

Example:

project application {

/* Declaration of a decision variable with a defaul t
value. */

INDENICA D2.1

 69

Integer bitrate = 128;

/* Declaration of an embedded DSL section within an IVML
project. */

DSL("dsl.com","$","http://www.dsl.com/dslInterpreter")

/* The actual DSL statements will be placed between
the DSL keywords. */

...

/* Applying IVML decision variables to DSL statemen ts
by using the DSL-specific prefix "$" defined above. */

... $bitrate ...

DSL("dsl.com")

}

5.3 Fulfillment of Requirements

In this section we will provide a summary on how the requirements collected in

Section 2 are implemented by the IVML, i.e. to which degree individual requirements

are realized by the language.

General Variability Modelling Requirements

• G1: Definition of a configuration space that represents all variabilities as a

composition of basic modelling elements. The IVML realizes G1 by decision

variables (Section 5.1.3) of the basic types (Section 5.1.2.1), defined as part of

projects (Section 5.1.1).

• G2: Definition of additional modelling elements (attributes) that may refine the

basic modelling elements and allow representing additional aspects of variability.

The IVML realizes this requirement by attributing modelling elements by further

(orthogonal) configuration capabilities (Section 5.2.1).

• G3: Definition of different types of value ranges, including non-Boolean

variability. The IVML realizes this requirement by enumerations (Section 5.1.2.2)

and container types (Section 5.1.2.3) of the basic types (Section 5.1.2.1), derived

types (Section 5.1.2.4) and compounds (Section 5.1.2.5).

• G4: Definition of product configurations, that allow describing individual

configurations based on the definition of the configuration space. In the IVML

this requirement is realized by assigning values to decision variables (Section

5.1.3), either using default values or constraints (shown in various examples in

the sections above).

• G5: Definition of constraints to restrict the combination of elements defined in

the (unconstrained) configuration space. Requirement G5 is realized by a

constraint language based on OCL (Section 5.1.4), in particular by logical,

relational and arithmetic expressions.

INDENICA D2.1

 70

• G6: Definition of complex dependencies among the individual variability

elements (and their attributes). Requirement G6 is realized by a constraint

language based on OCL (Section 5.1.4).

Requirements for Variability Modelling in Service-Based Systems

• S1: Definition of the variability relevant to service platform infrastructure,

technical platform services, domain-specific services, service composition and

processes and service and platform deployment. This requirement is an

extension of the general requirement G1. In Section 4.4, we discussed variability

relevant to these variability objects. The result of this discussion was that the

need to address arbitrary and unforeseeable extension to base functionality is a

major challenge. This is subsumed by requirement S15. Requirement S15 is

realized by inclusion and composition of projects (Section 5.2.3.2) and

refinement of compounds (Section 5.2.2.1). Evolution of configuration spaces is

further supported by versions and the modelling of explicit conflicts (Section

5.2.3.1).

• S2: Definition of (at least) the following forms of variation: optional, alternative

and multiple selection. In the IVML, primary means to realize S2 are Boolean

decision variables (Sections 5.1.2.1 and 5.1.3), enumerations (Section 5.1.2.2)and

container (Section 5.1.2.3).

Large Scale Variability

• S3: Grouping of related variability elements, e.g. to define a set of alternative

services from which the selected variant must be configured individually. This

requirement is an extension of the general requirement G1 and helps to organize

large scale variability. Requirement S3 is realized in the IVML by compound types

(Section 5.1.2.5).

• S4: Definition of "arrays" to represent sets of cases that need to be configured

while the relevant configuration possibilities have the same structure. Arrays

correspond in the IVML to sequences (Section 5.1.2.3).

• S5: Definition of strong dependencies in the sense that general (abstract)

decisions lead to the configuration of (multiple) lower-level decisions. This

requirement is realized in the IVML by defining constraints (Section 5.1.4) that

restrict a (set of) decision variable based on the values of other decision

variables.

Quality of Service

• S6: Specification of qualitative and quantitative properties describing QoS for

individual configurable elements. In the IVML, QoS properties can be modelled as

decision variables (Section 5.1.3) or as part of compounds (Section 5.1.2.5).

Qualitative properties can be modelled as (ordered) enumerations (Section

5.1.2.2) and quantitative properties as decision variables of type Real (Section

5.1.2.1).

• S7: Specification of arithmetic expressions to specify derived quality properties

(an example could be the overall quality of a service to be computed from

responsiveness and availability). In the IVML, arithmetic expressions are

INDENICA D2.1

 71

supported by the constraint language (Section 5.1.4) which also supports the

definition of named arithmetic expressions in the sense of function macros.

• S8: Definition of Constraints on QoS properties to express valid ranges and

dependencies among QoS. Constraints may be used (in combination with

arithmetic expressions) to map between qualitative and quantitative properties.

This requirement extends the general requirements G5 and G6. The constraint

language in the IVML supports the specification of valid ranges and dependencies

(Section 5.1.4) on decision variables which can be used to model QoS properties

(see fulfilment of requirement S6).

Meta-Variability

• S9: Definition of meta-variabilities and their individual properties. This

requirement is an extension of the general requirements G1 and G2.

Requirement S9 is realized by attributing already defined modelling elements

(Section 5.2.1).

• S10: Definition of the impact meta-variabilities have on the implementation

process. This requirement is an extension of the general requirement G4. This

requirement is realized by value assignments to attributes, either as default

values (Section 5.2.1) or by using value assignments of the constraint language

(Section 5.1.4).

• S11: Definition of constraints on meta-variabilities, e.g. to express that

configuring the binding time of one configuration space element restricts the

binding time of a dependent configuration space element. This requirement is an

extension of the general requirements G5 and G6. Requirement S11 is realized in

the IVML by supporting constraints (Section 5.1.4) on attributes (Section 5.2.1).

Eco-Systems

• S12: Composition of multiple variability models as well as their individual

configuration and the configuration across variability model boundaries. This

requirement is realized in the IVML by importing (multiple) source projects into

one target project (Section 5.2.3.2), thus making the type definitions, the

defaults, constraints and assigned decision values part of the target project.

• S13: Definition of constraints among modelling elements of different variability

models including a clear identification of each element with respect to its source.

In the IVML, each modelling element can be accessed in terms of its qualified

name (Section 5.2.3.2), in particular as parts of constraints (Section 5.1.4).

• S14 Partial configuration of variability models to enable pre-configuration and

reuse of existing variability models in new contexts. This requirement is realized

in the IVML by default values (Section 5.1.3) and value assignments as part of

constraints (Section 5.1.4). Further, the IVML supports freezing configured

decision variables (Section 5.2.4.2) as well as partial evaluation (Section 5.2.4.3)

in order to ease handling partial configurations.

• S15: Extension of the configuration space by variabilities that have not been

taken into account previously (open variation). This can be seen as a special case

of S12, however, it goes beyond it by demanding that existing variations can also

be extended at a later point. Requirement S15 is realized by inclusion and

composition of projects (Section 5.2.3.2) and refinement of compounds (Section

INDENICA D2.1

 72

5.2.2.1). Evolution of configuration spaces is further supported by versions and

explicit conflicts (Section 5.2.3.1).

• S16: Separation between local and global variability implementation reusing

variability models (modularity). In particular, this leads to the requirement of

variability interfaces. This requirement is realized by (multiple) interfaces for

IVML projects (Section 5.2.3.3).

Requirements from Industry

• I1: Definition of non-Boolean variability. This is subsumed by requirement G3.

This requirement is realized by the various types for decision variables

introduced in Section 5.1.2.

• I2: Definition of cardinality (i.e., making – restricted – choices in groups of

elements and replicate complete groups in order to provide individual

configuration possibilities for the various copies. This can be seen as an extension

to the requirement S3. Requirement I2 is realized in the IVML by constraint

operations on collections, particularly those representing first-order logic

quantors (Section 5.1.4).

• I3: Referencing of other (configuration) elements. Requirement I3 is realized by

qualified names of configuration elements and, in particular, the reference type

(Section 5.2.2.2) which realizes configuration references.

• I4: Integration with existing domain-specific languages. Due to its specialized

nature, we consider this as a low-priority requirement, but analyse this further in

Section 3.6. The IVML supports the specification and embedding of DSL code,

passing configured decision values to a DSL interpreter and using the result of the

DSL interpretation in the IVML (Section 5.2.5). This restricts the kinds of possible

DSL-integrations. We are further analysing the need for DSL-integration, its

specific requirements and further ways to address this.

• I5: Automatic deduction of lower-level configuration choices from higher-level

configuration selections. This is subsumed by requirement S5. This requirement

is realized in the IVML by defining constraints (Section 5.1.4) that restrict a (set

of) decision variable based on the values of other decision variables.

• I6: Definition of numerical constraints. This is subsumed by requirements G6, S7,

S8. In the IVML this is realized by relational and arithmetic constraints (Section

5.1.4)

• I7: Definition of binding-time dependencies of constraints. This is implicitly

handled in the IVML according to the point of time when models are composed,

i.e. when the definition of the constraints becomes available. This may also

happen at later binding-times, e.g. deployment or even runtime.

• I8: Definition of different views (according to different criteria) of the variability

model to reduce the complexity a user has to deal with. This requirement is

realized by supporting the definition of different interfaces of projects (Section

5.2.3.3). Each interface can be seen as a different view on the project exporting

the corresponding modelling elements.

• I9: Working with defaults, including complete default profiles describing defaults.

This may be handled as well on the tool level. The IVML realizes this requirement

by supporting the definition of default values for decision variables (Section

5.1.3) including single variables and compounds. The variables of an entire

INDENICA D2.1

 73

project may have default values representing an entire default profile. In

addition, a project may derive from another one by only importing it and

assigning default values. Thus, the project implements a default profile.

• I10: Integrated configuration of modularized (and composite) product lines. This

is mostly subsumed by S12 and S15. The IVML integrates modelling and

configuration of projects (Section 5.1.1) which, in particular, applies to

modularized projects, i.e. projects which define at least one interface (Section

5.2.3.3), and composition of projects (Section 5.2.3.2).

• I11: Integration with legacy product lines. In particular, the harmonized

configuration of different product lines. This is mostly subsumed by S12 and S15.

This requirement is realized by supporting the import and composition of

projects (Section 5.2.3.2), the use of the imported modelling elements as well as

the configuration of all available (unfrozen) decision variables with respect to

their constraints.

5.4 Summary

In the previous sections we described the concepts of the INDENICA Variability

Modelling Language (IVML). The descriptions of the concepts included the syntax of

the concepts, the provided keywords that are required to define the IVML elements

and expressions, as well as detailed syntax descriptions and examples. Finally, we

provided a summary on how the requirements collected in Section 2 are

implemented by the IVML, i.e. to which degree individual requirements are realized

by the language.

The IVML provides for stepwise enhancement of expressiveness by means of core

language and advanced modelling concepts. The concepts of the core modelling

language are based on the results of the discussion in Section 3, while the concepts

of the advanced modelling language rely on the discussion in Section 4. The

INDENICA variability modelling core language supports basic and compound types,

including the definition of individual or derived types, for defining decision variables

as well as a corresponding set of constraints for dependency management. These

concepts are sufficient for basic variability modelling as described in Section 3. The

advanced modelling concepts provide capabilities like the attachment of additional

attributes to modelling elements, extension mechanisms, partial configuration, etc.

These concepts address the specific requirements for variability modelling in service-

based systems and, in particular, in the INDENICA project as described in Section 4.

In addition, the IVML provides a lightweight concept for including domain-specific

languages (DSLs) as part of the variability model. This is to support situations, in

which the variability may be expressed more intuitively or more naturally using DSLs.

The summary on how the requirements collected in Section 2 are implemented by

the IVML shows that this variability modelling language completely supports the

required modelling capabilities for the INDENICA project. However, further

enhancements may occur to increase the ease of using the IVML. If they will occur,

they will be shown in future deliverables (D2.2.2).

INDENICA D2.1

 74

6 Application of IVML in the INDENICA Case Studies

This section analyses the application of IVML concepts in the industrial case studies

described in Deliverable D5.1. We will consider (preliminary) variability models

created by partners during early evaluations of IVML as well as models developed

during implementation of the case studies. As part of the analysis, we will discuss

semantically meaningful fragments of the variability models of the three INDENICA

case studies. This section is organized in a similar order to the introduction of IVML

concepts in section 5, i.e., we will first show the usage of the basic concepts in

Section 6.1 and then the application of advanced concepts in Section 6.2. Finally, in

Section 6.3 we will summarize the overall application of IVML concepts in the three

INDENICA case studies.

6.1 Application of the Core Language

In this section, we will discuss fragments from the variability models of the INDENICA

case studies, which illustrate the application of the core concepts of IVML. We will

start with the Remote Maintenance case as the structure of the model allows to

easily present a fragment representing an entire IVML project. Then we will discuss

fragments from the Warehouse and the Yard management case.

project Remote_Maintance {
 enum ServiceState {full, point2point, off};

 ServiceState videoCalls = ServiceState.point2po int;
 ServiceState audioCalls = ServiceState.full;
 Boolean changeUsersInCall = true;

 videoCalls = off and audioCalls = off
 implies changeUsersInCall = false;
}

Figure 10: Fragment from the variability model of the Remote Maintenance case study.

Figure 10 shows a fragment of the variability model for configuring a virtual machine

in the Remote Maintenance Case. Figure 10 illustrates the declaration of a project

(cf. Section 5.1.1), the definition of an enumeration (cf. Section 5.1.2.2) as well as

the declaration of decision variables (cf. Section 5.1.3) using the previously defined

enumeration and the basic type Boolean (cf. Section 5.1.2.1). While

changeUsersInCall is a Boolean decision variable (optional selection),

videoCalls and audioCalls represent alternative selections among three states.

The fragment in Figure 10 also illustrates a constraint on the defined decision

variables (cf. Section 5.1.4). This constraint states that if the capabilities for

videoCalls and audioCalls are disabled, changing users in a call

(changeUsersInCall) is not supported.

Figure 10 explicitly depicts the definition of the containing project. However, in the

fragments below we will concentrate on the specific use of selected IVML concepts

and will not provide a project definition, unless it is explicitly required.

INDENICA D2.1

 75

typedef forkNumber Integer with (forkNumber >= 0
 and forkNumber <= 8);

compound rackOperatorType {
 Integer maxSpeed;
 forkNumber forkCount;
}

compound laneType {
 Integer maxX, maxY;
}

compound highRack {
 sequenceOf(laneType) rackLanes;
}

Figure 11: Simplified fragment from the WMS variability model.

Figure 11 shows a fragment from the variability model of the Warehouse

Management System (WMS) case study29. This fragment defines the constrained

Integer type forkNumber using type derivation (cf. Section 5.1.2.4). The type

derivation, in turn, puts a constraint on all the decision variables of type

forkNumber , e.g., on the decision variable forkCount in the compound (cf.

Section 5.1.2.5) rackOperatorType . Further, the compound highRack defines a

decision variable rackLanes as a collection (cf. Section 5.1.2.3) of instances of the

compound laneType .

The WMS variability model particularly aims at specifying the topology of

warehouses supported by the underlying WMS and to configure the specific

topology of a certain warehouse at a customer site. This is achieved by combining

decision variables of different compound types, each capturing information of a

specific aspect of a warehouse. In Figure 11 this is illustrated in terms of the

individual compound declarations and their nesting using a container decision

variable.

Please note that Figure 11 is a fragment for illustrating the use of the core concepts

of IVML in the context of the WMS case study. In particular, constraints and

relationships among the individual types defined in that model are not discussed in

this section as they rely on advanced modeling concepts although these relationships

are important for modeling and finally configuring the topology of a certain

warehouse.

29

 Please note that the original model uses German terminology. In order to support readability in this

deliverable, we translated the terms to English.

INDENICA D2.1

 76

enum Location {cell, gps};
enum SchedulingType {simple, locationBased};

compound yjs {
 SchedulingType scheduling;
 Location location;
}

sequenceOf(yjs) ModuleList;
Boolean gps;

gps implies ModuleList->forAll(t |
 t.location = Location.gps);

Figure 12: Simplified fragment form the YMS case study.

Figure 12 depicts a fragment from the variability model of the Yard Management

System (YMS) case study. At first glance, it uses similar core IVML concepts as the

fragments shown above such as the definition of enumerations (cf. Section 5.1.2.2),

of compounds (cf. Section 5.1.2.2) and decision variables (cf. Section 5.1.4) using

basic types (cf. Section 5.1.2.1) as well as container types (cf. Section 5.1.2.3).

In contrast to the fragments shown above, this model specifies the variability within

subsystems of the YMS. In Figure 12, a part of the variability of the Yard Jockey

Support (yjs) subsystem is shown. Yard jockeys are informed about new tasks

according to a scheduling mode, which may either lead to simple task

assignments or to locationBased assignments. The relationship among the

alternatives expressed by the decision variables of yjs and their individual types is

further specified by a constraint shown at the bottom of Figure 12. This constraint

states that if gps (given as a global decision variable) is enabled, the location

mode of all decision variables of compound type yjs in ModuleList (quantor

expression) must be gps (defined by the enumeration Location).

project WMS_Configuration {

 autoLaneType wms;

 wms = {maxX = 5,

 maxY = 7,

 rackOperatorType = {maxSpeed = 42,

 forkNumber = 5}};

}

Figure 13: Configuration of decision variables in the WMS case study.

All three industrial use cases apply the configuration of decision variables (cf.

Section 5.1.5). An example configuration of the WMS model is shown in the

fragment in Figure 13. The fragment illustrates the configuration of the decision

variable wms, which is declared as a variable of type autoLaneType .

INDENICA D2.1

 77

During the initial evaluations of IVML by the INDENICA partners it was highlighted

that such configurations, which exclusively rely on domain terminology appear

natural to domain experts.

6.2 Usage of Advanced Concepts

In this section, we will discuss the application of the advanced modelling concepts of

IVML in the INDENICA case studies. Following the structure of Section 5.2, we will

start with an example for attributes, continue with versioned project composition,

and end this section with compound extension.

project Remote_Maintenance {
 version 0.5;

 enum BindingTimes {compile = 0, deployment = 1,
 runtime = 2};

 attribute BindingTimes bindingTime
 = BindingTimes.compile to Remote_Maintenance;

 // contents from Figure 10 follows here

 enum ServiceState {full, point2point, off};

 ServiceState videoCalls = ServiceState.point2po int;

 // …
}

Figure 14: Fragment of the compiletime variability model from the

Remote Maintenance case study.

In INDENICA, variability models will be instantiated at different times throughout

the software lifecycle (binding time), in particular at compile time, deployment

time, and runtime. Currently, the YMS as well as the Remote Maintenance use

case specify variability with different binding times. Below, we will illustrate the

usage of meta-variabilities, more specifically binding times, using the IVML

concept of attributes (cf. Section 5.2.1).

Figure 14 depicts a fragment from the Remote Maintenance case study, more

precisely, Figure 14 illustrates the compile time part of the variability model. The

entire variability model of the Remote Maintenance case consists of multiple

projects, which are finally composed to a single variability model.

The project Remote_Maintenance shown in Figure 14 defines an ordered

enumeration of binding times, i.e., an implicit partial order of the enumeration

literals so that compile time can be considered as a predecessor of deployment

time, which, in turn, acts as a predecessor of runtime. Further, it defines an

attribute called binding time with default value compile (from the previously

defined enumeration) and attaches this attribute to the entire project, i.e., also to

all contained decision variables. This attribute will be considered during

instantiation, i.e., decision variables attributed for compile time must be

INDENICA D2.1

 78

configured before the related variability instantiation mechanism will modify any

generic artefacts.

In addition, the project Remote_Maintenance shown in Figure 14 declares its

own version (here 0.5, cf. Section 5.2.3.1) which will be relevant when we now

discuss the application of project compositions in the INDENICA case studies.

project Remote_Maintenance_Runtime {

 import Remote_Maintenance with
 (Remote_Maintenance.version >= 0.5);

 attribute BindingTimes bindingTime
 = BindingTimes.runtime to Remote_Maintenance_Runtime;

 compound ServerState {
 Real freeMemory;
 Real cpuUsage;
 Integer availableVMs;
 }

 Integer currentUsers;
 Integer currentVMs;

 ServerState currentServerState;
 Boolean serversAtHalfFullSpeed;
 Integer additionalVMs;

 serversAtHalfFullSpeed =
 currentServerState.freeMemory < 0.2
 or currentServerState.cpuUsage > 0.8;

 currentUsers / currentVMs > 10000
 implies additionalVMs > 0;

}

Figure 15: Fragment of the composed runtime variability model from the Remote

Maintenance case study.

Figure 15 depicts a fragment of the runtime variability model part of the Remote

Maintenance case study. Please note that all industrial partners modularized their

models into multiple projects for different reasons such as building small and

understandable units or grouping together variables of the same binding time.

The project Remote_Maintenance_Runtime shown in Figure 15 imports another

project through project composition (cf. Section 5.2.3.2), here the compile time

part. Further, it also defines an attribute denoting the binding time for the project

and its contents, here with runtime as default binding time. Please note that the

enumeration BindingTimes is not redefined in this project as it is available

through the import of Remote_Maintenance . Further, please note that the import

of Remote_Maintenance is constrained by a minimum version number (cf.

Section 5.2.3.1). This is due to the fact that previous versions of the variability

INDENICA D2.1

 79

model for the Remote Maintenance use case did not contain binding times, i.e., the

enumeration BindingTimes was not defined, and so the use of these outdated

models must be prevented.

The project Remote_Maintenance_Runtime defines several decision variables to

be resolved at runtime, such as the server state, overall numbers of virtual

machines in use or even the actual number of users working on the platform. In

addition, the first constraint influences the speed of the servers at runtime

(serversAtHalfFullSpeed) while the second constraint requires (some)

addition virtual machines (additionalVMs) due to an arithmetic calculation of a

derived metric.

typedef forkNumber Integer with (forkNumber >= 0
 and forkNumber <= 8);

compound rackOperatorType {
 Integer maxSpeed;
 forkNumber forkCount;
}

compound laneType {
 Integer maxX, maxY;
}

compound autoLaneType refines laneType {
 rackOperatorType operatorDevice;
}

compound highRack {
 sequenceOf(laneType) rackLanes;
}

Figure 16: Compound refinements in the WMS variability model.

Both, the WMS and the YMS case study rely on the extension of compounds (cf.

Section 5.2.2.1). Figure 16 illustrates compound refinements in the WMS model.

Here, the compound autoLaneType refines the compound laneType , i.e., lanes

with automated rack operators (autoLaneType) are also lanes (laneType) but

provide additional variability. In IVML, extended compounds are similar to subclasses

in object orientation, i.e., autoLaneType is also of type laneType and, thus,

instances of autoLaneType may be used to define the rackLanes of a highRack .

(The difference is of course that as opposed to object orientation no methods can be

defined as IVML does not directly support the modeling of activities.) If not further

restricted by constraints, a highRack may consist of both kinds of lanes

(heterogeneous collection). In addition, future versions of the WMS may even

provide new types of lanes with individual variability (open-world scenario). This can

easily be integrated into existing variability models through extension and project

composition.

Finally, the configuration of a variability model is used for instantiating the

underlying product line artefacts. Instantiation mechanisms will take the

INDENICA D2.1

 80

configuration as an input and modify generic artefacts in the solution space

accordingly. However, configurations may change along project compositions, i.e.,

some imported projects may define a preconfigured profile of a platform, which is

(partially) overridden later. For the final instantiation step, only stable configurations

can be considered, i.e., those decision variables which are frozen (cf. Section

5.2.4.2). We will demonstrate this in terms of the WMS fragment already shown in

Figure 13.

import WMS_Configuration;

freeze {

 wms;

}

Figure 17: Freezing configuration values in the WMS case study.

Figure 17 imports the (partial) configuration from the project shown in Figure 13.

Thereby, the imported project is implicitly evaluated and wms receives a value, which

is, however, only a default value. In order to use it as a basis for the final

instantiation, the decision variable wms is frozen as shown in Figure 17. However,

having a configuration project and a freezing project is not always a practical

approach, in particular for tool support. Thus, a semantically equivalent model can

be expressed using the partial evaluation mechanism (cf. Section 5.2.4.3).

import WMS;

eval {

 wms = {maxX = 5,

 maxY = 7,

 rackOperatorType = {maxSpeed = 42,

 forkNumber = 5}};

}

freeze {

 wms;

}

Figure 18: Combination of partial evaluation and freezing a configuration

in the WMS case study.

Figure 18 depicts the combination of partial evaluation and freezing variables in one

project. The fragment imports the WMS variability model (an extension of Figure 12),

evaluates and then freezes the configuration. This combination of partial evaluation

with freezing is required as IVML does not provide support for defining the order of

evaluation, i.e., without partial evaluation it is not guaranteed the configuration is

defined before freezing the variables. As partial evaluations are executed inside-out

according to their nesting, first the partial evaluation block, i.e., the configuration is

processed and then the configuration is frozen as specified.

INDENICA D2.1

 81

Currently, the configurations of the variability models in the use case studies use

either the first or the second approach to specify their final configuration for

instantiation.

6.3 Overview on IVML Concepts used in INDENICA case studies

In this section, we summarize the IVML concepts used in the INDENICA case studies

so far in terms of a mapping of concepts to the case studies. Please note that we

discussed only fragments of these models in the sections above. This mapping of

language concepts to case studies is summarized in Table 3.

IVML-Level IVML Concept YMS WMS Remote

Maintenance

Core

Language

Project x x x

Basic types: Boolean,

Integer, Real, String

Integer,

String,

Boolean

Integer Integer, Real,

Boolean, String

Enumerations x - x

Container x x -

Type derivation and

restriction

- x -

Compounds x x x

Decision variables x x x

Constraints x x x

Configurations x x x

Advanced Attributes x - x

Extended compounds x x -

Referenced elements - - -

Project versioning - - x

Project composition x x x

Project interfaces - - -

Partial configuration - - -

Freezing configurations x x x

Partial evaluation x x -

DSL inclusion - - -

Table 3: Overview of currently used IVML concepts in INDENICA case studies.

Although the variability models as well as the case study implementations are still

under development, all the core IVML concepts as well as most of the advanced

language concepts are already used in the INDENICA case studies.

However, there are some of the advanced language concepts, which are currently

not used in any case study. This is due to the fact that the case studies and their

variability models are currently under development and the models will evolve until

the end of the INDENICA project. We expect that modularization and model

composition will be used extensively when the complexity and size of the models

increase. For example, the WMS model is already modularized into small parts with

related constraints but information hiding through interfaces is yet not established.

Further, the partners aim at creating a global variability model for all three service

INDENICA D2.1

 82

platforms in order to enable cross-platform variability including constraints. We

expect that this will lead to the use of interfaces as the internals of the individual

variability models shall not be visible in the global model in order to simplify

modelling as well as configuration. As part of these activities, also partial

configuration will be used as a natural extension of already used configuration

concepts. Moreover, we also expect the use of configuration references, in

particular in the WMS case study, as this concept specifically supports the creation of

networks and the specification of complex topologies.

While we are confident about the advanced concepts mentioned above, we also see

that the need for the inclusion of domain-specific languages decreased since the

requirements elicitation phase for IVML. One particular feedback from our industrial

partners in applying IVML is that textual variability configurations appear natural to

domain experts as also mentioned in Section 6.1. Thus, we decreased the priority for

DSL inclusion during the design phase of IVML and provide just a basic mechanism to

realize requirement I4.

It should also be emphasized that even if some of the concepts will not be exploited

in the final use case studies, this does not necessarily mean that these concepts were

superfluous or inappropriate. For example configuration references were introduced

based on a different use case provided by Siemens, which was intensively discussed,

but later the decision was made that these case studies should not be further

pursued in favour of the finally chosen ones. It was our aim with the IVML to provide

a language that ideally covers the challenges of service platform configuration as

broad as possible. Thus, the absence of some concepts in some case studies does not

lead to the inappropriateness of the corresponding language in the same way as the

fact that some language elements are not used in a specific program is no indication

of the inappropriateness of this program language.

What we see as the main evaluation criterion is that language is able to cover all

relevant cases. Here, the experiences in the industrial case studies were very

positive. We also discussed the language with other industrial partners outside the

project and got very positive feedback as well. Thus, we currently assume that this

language is very well suited for the configuration of service platforms.

INDENICA D2.1

 83

7 Conclusion

In this deliverable, we aimed at determining the core expressiveness of the

INDENICA variability modelling language and further extensions that arise from the

specific requirements of the INDENICA project. As a consequence, the structure of

this deliverable followed the distinction of core modelling aspects and advanced

variability modelling extensions.

In a first step, we identified and defined the requirements for variability modelling in

INDENICA. This information was derived from multiple sources, including general

variability modelling requirements, demands for variability modelling in service-

based systems and feedback from the industrial partners in the project. The set of

requirements served as a basis for the discussions and decisions towards the

concepts of the INDENICA variability modelling language.

In Section 3, we discussed core variability modelling concepts. The focus was to

categorize different variability modelling concepts with respect to their

expressiveness. This discussion covered the supported types of modelling elements

and the provided dependency management capabilities. On this basis, we identified

the required core expressiveness of the INDENICA approach to satisfy general

variability modelling requirements as well as to provide a basis for the advanced

modelling concepts in an effective and easy to use manner.

Section 4 focused on advanced variability modelling concepts to provide an overview

of additional extensions to core variability modelling that are required by the

INDENICA project. Again, we discussed the required modelling elements and

dependency management capabilities for modelling, e.g. Quality of Service (QoS) and

meta-variabilities. We emphasize concepts like modularity and extensibility as these

are mayor issues, in particular, in service and service platform ecosystems. Some

identified concepts were already covered by the concepts we demand for the

INDENICA core modelling language in Section 3 (e.g. non-Boolean variability to

express quantitative properties for QoS).

Section 5 then introduced the concepts of the INDENICA variability modelling

language. These concepts were selected based on the results of our previous

discussions in Section 3 and Section 4. The main contribution is to provide a

variability modelling language that satisfies all identified requirements in Section 2 in

an effective and easy to use manner. The core modelling concepts of the INDENICA

variability modelling language enable the modelling of basic variabilities. The

advanced modelling concepts extend the core concepts to satisfy the specific

demands that arise in the INDENICA project. Again, ease of use for the most

standard issues was important, so we extended the core concepts in a way so that

their use is not complicated for users who do not need the more advanced features.

Section 6 analyzed the application of IVML variability modeling concepts in the

industrial case studies in INDENICA. Therefore, we discussed fragments of the

variability models created for the base platforms by the industrial partners in terms

of their support for core language concepts and advanced language concepts. We

INDENICA D2.1

 84

summarized the application of concepts and showed that all basic concepts as well

as almost all advanced concepts of IVML are used in the case studies. For concepts,

which are currently not used, we discussed their expected use until the end of the

project. In summary, we are confident that all concepts except for DSL inclusion will

be used in INDENICA. Moreover, the experience in the project so far is that all we

found basically all relevant concepts based on our detailed requirements analysis.

We thus expect that there will be only rather minor extensions to the language till

the end of the project, if any.

Further work on the IVML will focus on the deep integration with the concepts

discussed in deliverable D2.2.1 and the systematic evaluation based on the project

case studies.

INDENICA D2.1

 85

References

[1] M. Acher, P. Collet, P. Lahire, and R. B. France. A Domain-Specific Language for

Managing Feature Models. In Proceedings of the 26th ACM Symposium on

Applied Computing (SAC '11), 2011.

[2] O. Aoki. Debian Reference, 2007. Online available at:

http://qref.sourceforge.net/Debian/reference/reference.en.pdf.

[3] D. Ayed and Y. Berbers. Dynamic Adaptation of CORBA Component-Based

Applications. In Proceedings of the 22nd Annual ACM Symposium on Applied

Computing (SAC '07), pages 580–585, 2007.

[4] K. Bak, K. Czarnecki, and A. Wasowski. Feature and Meta-models in Clafer:

Mixed, Specialized, and Coupled. In B. Malloy, S. Staab, and M. van den Brand,

editors, Proceedings of the 3rd International Conference on Software Language

Engineering (SLE '10), volume 6563 of Lecture Notes in Computer Science,

pages 102–122. Springer, 2010.

[5] J. Bartholdt, M. Medak, and R. Oberhauser. Integrating Quality Modeling with

Feature Modeling in Software Product Lines. In K. Boness, J. M. Fernandes, J. G.

Hall, R. J. Machado, and R. Oberhauser, editors, Proceedings of the 4th

International Conference on Software Engineering Advances (ICSEA '09), pages

365–370. IEEE Computer Society, 2009.

[6] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated Analysis of Feature

Models: Challenges Ahead. Communication of the ACM (CACM), 49(12):45–47,

2006.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated Reasoning on Feature

Models. In Proccedings of the 17th International Conference on Advanced

Information Systems Engineering (CAISE '05), pages 491–503, 2005.

[8] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using Constraint Programming to

Reason on Feature Models. In Proceedings of the 17th International Conference

on Software Engineering and Knowledge Engineering (SEKE '05), pages 677–

682, 2005.

[9] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated Analysis of Feature

Models 20 Years Later: A Literature Review. Information Systems, 35:615–636,

2010.

[10] G. Botterweck, A. Polzer, and S. Kowalewski. Interactive Configuration of

Embedded Systems Product Lines. In Proceedings of the 1th International

Workshop on Model-driven Approaches in Product Line Engineering

(MAPLE'09), collocated with the 13th International Software Product Line

Conference (SPLC'09), 2009.

[11] G. Botterweck, A. Polzer, and S. Kowalewski. Using Higher-order

Transformations to Derive Variability Mechanism for Embedded Systems. In

INDENICA D2.1

 86

Proceedings of the 12th International Workshop and Symposia on Model Driven

Engineering Languages and Systems (MoDELS'09, 2009.

[12] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing TVL, a Text-

Based Feature Modelling Language. In Proceedings of the 4th International

Workshop on Variabilits Modelling of Software-Intensive Systems (VaMoS '10),

pages 159–162, 2010.

[13] H. Brummermann, M. Keunecke, and K. Schmid. Formalizing Distributed

Evolution of Variability in Information System Ecosystems. In Proceedings of

the 6th International Workshop on Variability Modelling of Software-intensive

Systems (VaMoS '12), 2012.

[14] W. Cazzola and D. Poletti. DSL Evolution through Composition. In Proceedings

of the 7th Workshop on Reflection, AOP and Meta-Data for Software Evolution

(RAM-SE '10), RAM-SE '10, pages 6:1–6:6, New York, NY, USA, 2010. ACM.

[15] K. Chan and I. Poernomo. QoS-Aware Model Driven Architecture through the

UML and CIM. In Proceedings of the 10th IEEE International Enterprise

Distributed Object Computing Conference (EDOC '06), pages 345–354,

December 2006.

[16] M. Clauß. Generic Modeling Using UML Extensions for Variability. In

Proceedings of the Workshop on Domain Specific Visual Languages, pages 11–

18, 2001.

[17] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski. Cool

Features and Tough Decisions: Two Decades of Variability Modeling. In

Proceedings of the 6th International Workshop on Variability Modeling of

Software-Intensive Systems (VaMoS '12), 2012. To appear.

[18] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration Using Feature

Models. In Robert Nord, editor, Software Product Lines, volume 3154 of

Lecture Notes in Computer Science, pages 162–164. Springer, 2004.

[19] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-Based

Feature Models and their Specialization. Software Process: Improvement and

Practice, Special Issue on Software Variability: Process and Management,

10(1):7 – 29, 2005.

[20] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration Through

Specialization and Multi-Level Configuration of Feature Models. Software

Process Improvement and Practice, 10(2):143–169, 2005. Special Issue on

Software Product Lines.

[21] K. Czarnecki and P. Kim. Cardinality-Based Feature Modeling and Constraints: a

Progress Report. In Proceedings of the International Workshop on Software

Factories at the 10th International Conference on Object-Oriented

Progamming, Systems, Languages and Applications (OOPSLA '05), 2005.

[22] T. M. Dao, H. Lee, and K. C. Kang. Problem Frames-Based Approach to

Achieving Quality Attributes in Software Product Line Engineering. In de

Almeida et al. [23], pages 175–180.

INDENICA D2.1

 87

[23] E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid, editors.

Software Product Lines - 15th International Conference, SPLC 2011, Munich,

Germany, August 22-26, 2011. IEEE, 2011.

[24] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER Meta-Tool for

Decision-Oriented Variability Modeling: a Multiple Case Study. Automated

Software Engineering, 18:77–114, 2011.

[25] S. Dustdar and F. Li. Service Engineering - European Research Results. Springer,

2011.

[26] S. El-Sharkawy, C. Kröher, and K. Schmid. Supporting Heterogenous

Compositional Multi Software Product Lines. In Proceedings of the 15th

International Software Product Line Conference (SPLC '11), volume 2, 2011.

[27] C. Elsner, P. Ulbrich, D. Lohmann, and W. Schr/öder-Preikschat. Consistent

Product Line Configuration Across File Type and Product Line Boundaries. In

Proceedings of the 14th International Software Product Line Conference (SPLC

'10), pages 181–195, 2010.

[28] European Software Institute Spain, IKV++ Technologies AG Germany. MASTER:

Model-driven Architecture inSTrumentation, Enhancement and Refinement, ist-

2001-34600, master-2002-d1.1-v1-public edition, 2002.

[29] M. Fowler and R. Parsons. Domain-Specific Languages. Addison Wesley

Signature Series. Addison-Wesley, 2010.

[30] S. Frolund and J. Koistinen. QML: A Language for Quality of Service

Specification. Technical Report HPL-98-10, Hewlett Packard Company, 1998.

[31] C. Ghezzi and A. Molzam Sharifloo. Verifying Non-Functional Properties of

Software Product Lines: Towards an Efficient Approach Using Parametric

Model Checking. In de Almeida et al. [23], pages 170–174.

[32] D. Ghosh. DSLs in Action. Manning Publications, 1 edition, December 2010.

[33] D. Ghosh. DSL for the Uninitiated. Queue, 9:10:10–10:21, June 2011.

[34] H. Haas and A. Brown. World Wide Web Consortium (W3C) Web Service

Glossary: Quality of Service, 2011. Online available at:

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211.

[35] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using Product Line Techniques

to Build Adaptive Systems. In Proceedings of the 10th International Software

Product Line Conference (SPLC'06), pages 141–150, Washington, DC, USA,

2006. IEEE Computer Society.

[36] O. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen. Adding

Standardized Variability to Domain Specific Languages. In Proceedings of the

12th International Software Product Line Conference (SPLC '08), pages 139–

148, Washington, DC, USA, 2008. IEEE Computer Society.

[37] G. Holl, M. Vierhauser, W. Heider, P. Grünbacher, and R. Rabiser. Product Line

Bundles for Tool Support in Multi Product Lines. In Proceedings of the 5th

INDENICA D2.1

 88

International Workshop on Variability Modeling of Software-Intensive Systems

(VaMoS '11), pages 21–28, 2011.

[38] D. Jackson, I. Schechter, and H. Shlyahter. Alcoa: The Alloy Constraint Analyzer.

In Proceedings of the 22nd International Conference on Software Engineering

(ICSE 2000), ICSE '00, pages 730–733, New York, NY, USA, 2000. ACM.

[39] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A Feature-Oriented

Reuse Method with Domain-Specific Reference Architecture. Annals of

Software Engineering, 5:143–168, 1998.

[40] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-

90-TR-21 ESD-90-TR-222, Software Engineering Institute Carnegie Mellon

University, 1990.

[41] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and Systems

Management, 11:57–81, March 2003.

[42] H. Krahn, B. Rumpe, and S. Völkel. Efficient Editor Generation for

Compositional DSLs in Eclipse. In Proceedings of the 7th OOPSLA Workshop on

Domain-Specific Modeling (DSM' 07), Montreal, Quebec, Canada, 2007.

[43] D. D. Lamanna, J. Skene, and W. Emmerich. SLAng: a Language for Defining

Service Level Agreements. In Proceedings of the 9th IEEE Workshop on Future

Trends of Distributed Computing Systems (FTDCS '03), FTDCS '03, pages 100–,

Washington, DC, USA, 2003. IEEE Computer Society.

[44] Y. Li, X. Zhang, Y. Yin, and J. Wu. QoS-Driven Dynamic Reconfiguration of the

SOA-Based Software. In Proceedings of the 2010 International Conference on

Service Sciences (ICSS '10), pages 99–104, 2010.

[45] A. Ludwig and B. Franczyk. COSMA — An Approach for Managing SLAs in

Composite Services. In Proceedings of the 6th International Conference on

Service-Oriented Computing (ICSOC '08), ICSOC '08, pages 626–632. Springer,

2008.

[46] J. X. Mansell and D. Sellier. Decision Model and Flexible Component Definition

Based on XML Technology. In Proceedings of the 5th International Workshop

on Software Product-Family Engineering (PFE 2003), pages 466–472, 2003.

[47] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability Modeling to

Support Customization and Deployment of Multi-Tenant-Aware Software as a

Service Applications. In Proceedings of the 2009 ICSE Workshop on Principles of

Engineering Service Oriented Systems (PESOS '09), pages 18–25, 2009.

[48] B. Mohabbati, D. Gasevic, M. Hatala, M. Asadi, E. Bagheri, and M. Boskovic. A

Quality Aggregation Model for Service-Oriented Software Product Lines Based

on Variability and Composition Patterns. In G. Kappel, Z. Maamar, and H. R.

Motahari-Nezhad, editors, Proceedings of the 9th International Conference on

Service Oriented Computing (ICSOC '11), volume 7084 of Lecture Notes in

Computer Science, pages 436–451. Springer, 2011.

INDENICA D2.1

 89

[49] B. Morin, G. Perrouin, P. Lahire, O. Barais, G. Vanwormhoudt, and J.-M.

Jezequel. Weaving Variability into Domain Metamodels. In Proceedings of the

12th International Conference on Model Driven Engineering Language and

Systems (MoDELS'09), 2009.

[50] C. Müller, O. Martn-Dáz, A. Ruiz-Cortés, M. Resinas, and P. Fernández.

Improving Temporal-Awareness of WS-Agreement. In Proceedings of the 5th

International Conference on Service-Oriented Computing (ICSOC '07), ICSOC '07,

pages 193–206. Springer, 2007.

[51] Object Management Group, Inc. (OMG). Meta Object Facility (MOF) Core

Specification, v2.0. Technical Report formal/06-01-01, January 2006. Online

available at: http://www.omg.org/spec/MOF/2.0/.

[52] Object Management Group, Inc. (OMG). Object Constraint Language.

Specification v2.00 2006-05-01, Object Management Group, May 2006.

Available online at: http://www.omg.org/docs/formal/06-05-01.pdf.

[53] Object Management Group, Inc. (OMG). Unified Modeling Language:

Superstructure version 2.1.2. Specification v2.11 2007-11-02, Object

Management Group, November 2007. Available online at:

http://www.omg.org/docs/formal/2007-11-02.pdf.

[54] Object Management Group, Inc. (OMG). A UML Profile for MARTE: Modeling

and Analysis of Real-Time Embedded Systems, Beta 2. Technical Report

ptc/2008-06-09, Object Management Group, June 2008. Online available at:

http://www.omg.org/docs/ptc/08-06-09.pdf.

[55] Object Management Group, Inc. (OMG). Common Variability Language (CVL),

2010. OMG initial submission. Available on request.

[56] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and A. Wasowski. A

Study of Non-Boolean Constraints in Variability Models of an Embedded

Operating System. In Proceedings of the 3rd International Workshop on

Feature-Oriented Software Development (FOSD '11), 2011.

[57] T. Phan, J. Han, J.-G. Schneider, and K. Wilson. Quality-Driven Business Policy

Specification and Refinement for Service-Oriented Systems. In Proceedings of

the 6th International Conference on Service-Oriented Computing (ICSOC '08),

ICSOC '08, pages 5–21. Springer, 2008.

[58] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, August 2005.

[59] Mark-Oliver Reiser. Core Concepts of the Compositional Variability

Management Framework (CVM). Technical Report 2009/16, Technische

Universität Berlin, 2009. Available online at http://www.eecs.tu-

berlin.de/menue/forschung/forschungsberichte/.

[60] C. Riedl, T. Böhmann, M. Rosemann, and H. Krcmar. Quality Aspects in Service

Ecosystems: Areas for Exploitation and Exploration. In Proceedings of the 10th

International Conference on Electronic Commerce (ICEC '08), number 19, 2008.

INDENICA D2.1

 90

[61] M. Rosenmüller and N. Siegmund. Automating the Configuration of Multi

Software Product Lines. In Proceedings of the 4th International Workshop on

Variability Modelling of Software-Intensive Systems (VaMoS '10), pages 123–

130, 2010.

[62] K. Schmid. Variability Modeling for Distributed Development - A Comparison

with Established Practice. In Jan Bosch and Jaejoon Lee, editors, Software

Product Lines: Going Beyond, volume 6287 of Lecture Notes in Computer

Science, pages 151–165. Springer, 2010.

[63] K. Schmid and I. John. A Customizable Approach To Full-Life Cycle Variability

Management. Science of Computer Programming, 53(3):259–284, 2004.

[64] K. Schmid, R. Rabiser, and P. Grünbacher. A Comparison of Decision Modeling

Approaches in Product Lines. In Proceedings of the 5th Workshop on Variability

Modeling of Software-Intensive Systems (VaMoS '11), pages 119–126, 2011.

[65] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature Diagrams: A Survey and

a Formal Semantics. In Proceedings of the 14th IEEE Requirements Engineering

Conference (RE '06), pages 139–148, 2006.

[66] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and S. S.

Kolesnikov. Scalable Prediction of Non-functional Properties in Software

Product Lines. In de Almeida et al. [23], pages 160–169.

[67] Software Productivity Consortium Services Corporation, Technical Report SPC-

92019-CMC. Reuse-Driven Software Processes Guidebook, Version 02.00.03,

November 1993.

[68] N. Steinmetz and I. Toma. D16.1v1.0 WSML Language Reference. Technical

Report D16.1v1.0, ESSI WSMO working group, August 2008.

http://www.wsmo.org/TR/d16/d16.1/v1.0/.

[69] D. Streitferdt, M. Riebisch, and I. Philippow. Details of Formalized Relations in

Feature Models Using OCL. In Proceedings of the 10th IEEE International

Conference on Engineering of Computer-Based Systems (ECBS '03), 45-54, 2003.

[70] The Eclipse Foundation. Eclipse 3.1 Documentation: Platform Plug-in Developer

Guide, 2005. Online available at: http://www.eclipse.org/documentation.

[71] V. Tosic, B. Pagurek, B. Esfandiari, K. Patel, and W. Ma. Web Service Offerings

Language (WSOL) and Web Service Composition Management (WSCM). In

Proceedings of the Object-Oriented Web Services Workshop (OOWS '02), 2002.

[72] Rob van Ommering. Building Product Populations with Software Components.

PhD thesis, University of Groningen, 2004.

[73] M. Voelter and E. Visser. Product Line Engineering using Domain-Specific

Languages. In Proceedings of the 15th International Software Product Line

Engineering Conference (SPLC '11), pages 70–79, 2011.

[74] J. White, B. Doughtery, and D. Schmidt. Selecting Highly Optimal Architectural

Feature Sets with Filtered Cartesian Flattening. Journal of Systems and

Software, 82(8):1268–1284, 2009.

INDENICA D2.1

 91

[75] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, and Arnor Solberg. An

MDA®-Based Framework for Model-Driven Product Derivation, 2004.

[76] Z. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a UML Profile for Software

Product Lines. In Proceedings of the 5th International Workshop on Software

Product-Family Engineering (PFE '03), number 3014, pages 129––139, 2004.

[77] S. Zschaler, P. Sanchez, J. Santos, M. Alferez, A. Rashid, L-Fuentes, A-Moreira,

J. Araujo, and U. Kulesza. VML* – A Family of Languages for Variability

Management in Software Product Lines. In Proceedings of the 2nd

International Conference on Software Language Engineering (SLE'09), pages

82–102, 2009.

