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1 Introduction 

The main focus of work package 2 within the INDENICA project is the customization 

of service platforms. As part of this effort, this deliverable addresses variability 

modelling, variability modelling in service-based systems in general and open 

variability modelling approaches for service ecosystems in INDENICA in particular. 

This is of course related to the implementation of variability, which we addressed in 

deliverable D2.2.1 initially, and which we will finalize in deliverable D2.2.2. 

In this deliverable the modelling of variability in general as well as variability 

modelling in service-based systems serves as a basis for determining the core 

expressiveness of the INDENICA variability modelling language. This core variability 

modelling language will be further developed and enhanced by extensions that arise 

from the specific requirements of the INDENICA project. As a consequence, the 

structure of this deliverable follows the distinction of core modelling aspects and 

advanced variability modelling extensions. 

In Section 2, we define the requirements for variability modelling in INDENICA. This 

information is derived from multiple sources, including general variability modelling 

requirements, demands for variability modelling in service-based systems and 

feedback from the industrial partners in the project. 

Section 3 discusses core variability modelling concepts. The focus of this section is to 

analyse modelling concepts of different expressiveness with respect to their support 

for service-based systems as required in the INDENICA project. The results of this 

discussion will serve as a basis for the core of the INDENICA modelling language that 

we will define in Section 5. The discussion will cover basic variability modelling using 

Boolean elements and expressions, the introduction of cardinalities, the extension to 

non-Boolean expressions, configuration references, and finally the integration of 

domain-specific languages (DSLs). We will approach this discussion by investigating 

the expressiveness of each concept. The investigation focuses on the modelling 

elements introduced by the specific concepts and the different constraint and 

operator types available for dependency management. A running example will 

illustrate the various levels of expressiveness in variability modelling throughout this 

section.  

In Section 4, we discuss advanced variability modelling concepts. The focus of this 

section is to provide an overview of additional extensions to core variability 

modelling that are required by the INDENICA project. The results of this discussion 

will serve as a basis for the advanced variability modelling concepts of INDENICA that 

we will define in Section 5. These extensions will satisfy the additional requirements 

that the INDENICA core variability language does not directly address. We will cover 

issues like support for service ecosystems, Quality of Service (QoS) and Service Level 

Agreements (SLA), meta-variability, and service technology-specific extensions.  

Section 5 defines the INDENICA variability modelling approach. The investigation of 

variability modelling concepts with different expressiveness in Section 3 serves as a 

basis for the first part of this section. We describe a core variability modelling 
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language that relies on our analysis of the required expressiveness. The second part 

then describes the auxiliary features of the variability modelling language. This in 

turn relies on the analysis given in Section 4.  

Finally, Section 6 reviews the concepts of the INDENICA variability modelling 

approach introduced in Section 5 from the point of view of the INDENICA case 

studies. We will discuss the usage of individual language concepts in this section as 

well as the actual coverage of the approach by the (preliminary) variability models 

that were developed as part of the work on the use cases so far. 

Further relationships to other INDENICA deliverables are: 

- D1.2.1: Variabilities in the requirements model. 

- D3.1: Variabilities in architectural models and in the view-based modelling 

approach, instantiation of models and variable assets by generative 

techniques 

- D4.1: Configuration of deployment and monitoring. 

- D5.2: Concrete variability points in the use cases and industrial platforms. 

 

Comments on the relation to previous work: 

- All analysis performed in Sections 2-4 have been performed exclusively as 

part of the INDENICA project and were motivated by the project. 

- The specific proposal for a variability-modelling approach developed in 

Section 5 was derived specifically within and for the INDENICA project. 

Relationships to previously developed variability modelling approaches exist. 

They are further discussed in Section 5. 
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2 Demands for Variability Modelling in INDENICA 

In this section, we provide an overview of the main requirements that we could 

identify for variability modelling in the INDENICA context. These requirements were 

derived from several sources. Some requirements were already described on a high 

level in the proposal document. Some requirements are implicitly stated in the 

description of the INDENICA case studies in Deliverable D5.1. We will cross-reference 

the case study requirements here in terms of footnotes. We will first consider 

variability modelling in general as a starting point to derive basic demands for such 

modelling approaches. The results of this consideration and analysis are described in 

Section 2.1. 

In Section 2.2, we will investigate the demands for variability modelling that arise in 

the context of service-based systems in general, and, in particular, in the context of 

the INDENICA project. This will also satisfy the high level requirements of the 

proposal document. 

In addition, we discussed variability modelling requirements with our industrial 

partners. While these requirements are somewhat influenced by existing modelling 

approaches and experiences in variability modelling, they should provide additional 

insight. This will be described in Section 2.3. 

2.1 General Variability Modelling Requirements 

A variability model is an abstraction of all common and varying software assets, for 

example, of a specific software product line. The model illustrates all commonalities 

and variabilities, their relations and the rules and dependencies among them. The 

activity of variability modelling aims at the definition of such a model using a specific 

variability modelling approach. The variability model can then be used to define 

product configurations by selecting valid variability combinations without any 

knowledge about the actual implementation. In this section, we discuss general 

requirements for variability modelling with a focus on the basic elements and 

capabilities that are typically needed to define and to use a variability model. 

A variability model defines the valid configuration space1 of a specific software 

product line. These variabilities are then implemented in the artefacts. The 

configuration space consists of a set of atomic and configurable elements. Each of 

these elements represents a specific variability. These basic modelling elements can 

be further described using additional elements, for example, configurable attributes 

for each basic modelling element. All elements of a configuration space are basically 

optional. In practice, the definition of constraints restricts this optionality, for 

example, to alternatives from which at least on element must to be selected or 

configured (we will discuss constraints in detail below). Determining a specific 

configuration of such elements, leads to the configuration of the corresponding 

software artefacts. In deliverable D2.2.1, we discussed several different approaches 

                                                      
1
 D5.1 acknowledges the general need for variability modeling and points to some specific aspects, which we will 

discuss in this and the following sections. 
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to variability implementation and the relation between model and artefact space. 

Some examples of such basic modelling elements are features in feature modelling 

[40, 65], variation points and variants in orthogonal variability modelling [58], and 

decisions and decision values in decision modelling [24, 63].  

An illustrative configuration space may be the definition of the configurable 

elements of a car. We use a decision modelling notation for this definition. The 

decision model of a car DMCar  may be defined as a set of three decisions, namely the 

driving system, the engine and the transmission. The transmission further has a sub-

decision gears that specifies the number of gears for a selected transmission (we use 

“.”-notation to indicate a sub-decision): 

DMCar  = {driving_system, engine, transmission, 

transmission.gears} 

The possible values of decisions val(x)  are defined with respect to the available 

(physical) components of the modelled car. A customer can choose between a two-

wheel or a four-wheel driving system, a gasoline or a diesel engine, and a manual or 

an automatic transmission. The transmission can have five to seven gears: 

val(driving_system) = {two_wheel,four_wheel} 

val(engine) = {gasoline,diesel} 

val(transmission) = {manual,automatic} 

val(transmission.gears) = [5,7] 

A variability modelling language must support the definition of modelling elements 

to represent all variabilities in the artefact space. This includes the definition of 

modelling elements of different value types, e.g. enumerations (decision 

driving_system ) or integers (decision attribute transmission.gears ) and 

their possible values. We will further discuss details of the capabilities of variability 

modelling approaches in Section 3. 

An application engineer uses such a variability model to define individual (software) 

product configurations2. A product configuration is a set of configured elements of 

the configuration space that represents exactly one product. The corresponding 

activity of defining a product configuration is called configuration process. The 

configuration of an individual car using the decision model DMCar  may lead to a 

product configuration Conf Car1  specifying a four-wheel-drive, a gasoline engine and 

a manual transmission with six gears: 

Conf Car1  = ( 

driving_system = four_wheel, 

engine = gasoline, 

transmission = manual, 

transmission.gears = 6 

) 

                                                      
2
 D5.1, section 2.5.3: Platforms must be configured for different hardware and PLC configurations. D5.1, section 

4.2.2: The result of the configuration process shall be a variability configuration model. 
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A variability modelling language must support the definition of multiple and 

individual product configurations on the basis of a variability model. The element 

combination defined in such a product configuration varies from product to product 

and, thus, has to be handled independently for each product configuration. 

The definition of constraints3 restricts a configuration space. These restrictions may 

be due to requirements, technical or implementation aspects. More precisely, the 

constraints restrict the combination of configuration space elements. These 

restrictions guarantee that the configuration of products using the variability model 

yield valid product configurations. A product configuration is valid only if the 

selected element combination does not violate any constraints. The intention is of 

course that a valid product configuration can be translated into a valid product 

implementation, i.e., results in a correctly working product. The configuration space 

of the car may be restricted to have a four-wheel-drive only in combination with an 

automatic transmission while an automatic transmission requires at least six gears: 

driving_system == four_wheel requires  

transmission == automatic 

transmission == automatic requires  

transmission.gears >= 6 

Thus, the product configuration that we defined above would be invalid with respect 

to these constraints. The solution is to reconfigure the product (configuration) to 

either include an automatic transmission instead of a manual one or to change from 

four-wheel-drive to a two-wheel-drive. 

A variability modelling language must support the definition of constraints to restrict 

the configuration space. This includes restrictions of the combination of configurable 

elements and complex dependencies among the individual elements (and their 

attributes). This capability is mandatory to provide a mechanism that guarantees the 

definition of valid and, thus, planned product configurations. The definition of 

constraints requires the support of different operator types, e.g. Boolean or 

relational operators (see the example above). The available operator types typically 

depend on the value types available for the definition of the configuration space. 

The mapping of a valid product configuration to the artefact space leads to the 

instantiation of a valid product. Different approaches exist to realize such mappings. 

Schmid et al. [64] discuss different types of mapping between decision models and 

artefact space. Czarnecki et al. [17] have the same discussion on different mapping 

techniques for feature models. We described initially the mapping of valid product 

configurations in deliverable D2.2.1 as part of the variability implementation. We will 

continue this description in deliverable D2.2.2 based on the INDENICA variability 

modelling language defined in this deliverable. In the car example, the mapping and 

instantiation of the valid product configuration (we changed transmission to an 

                                                      
3
 D5.1, section 2.5.1: The configuration of the WMS system shall depend on the height and length of the high 

racks. The amount of high racks has a direct impact on the WMS. D5.1, section 2.5.5: The predefined relation 

between rack size and maximum weight per storage unit as well as between shape of the product, palette and 

warehouse specification shall be considered. D5.1, section 5.1.2: Restrictions on yard jockey and dock 

assignment strategies shall be considered. 
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automatic one) results in a real-world car with a four wheel driving system, a 

gasoline engine and an automatic transmission with six gears ready to drive. 

The above discussion describes the general issues that are relevant when providing a 

variability modelling language, especially in the context of INDENICA. A list of the 

identified requirements can be found in Section 2.4 under "General Variability 

Modelling Requirements".  

2.2 Variability Modelling in Service-Based Systems 

In this section, we discuss specific requirements regarding variability modelling in 

service-based systems. Service Engineering has changed the development of 

software systems. A service-based system is no longer considered as an independent 

software product but provides local services and consumes other, maybe third-party 

services. Thus, it can be considered to be part of a service ecosystem. Variability 

arises naturally in these systems, e.g. as services can be easily exchanged or 

modified. This imposes specific requirements on the variability modelling language. 

In this section, we will discuss different aspects of variability in service-based 

systems and derive resulting requirements with respect to variability modelling. 

In service-based systems, different variability objects4 are relevant that may be 

impacted by a variability model. A variability object is the part of the service 

platform, service, or service-based application that is supposed to vary. The 

variability relevant to variability objects in service-based systems must be defined in 

a variability model. In deliverable D2.2.1, we identified and defined the following 

variability objects relevant to an INDENICA platform: 

• Service Platform Infrastructure: This is the basic platform implementation, 

which cannot be further refined into specific services. This can be realized in 

an arbitrary (non-service-oriented) way. Variability in the basic platform 

implementation regards all basic functionalities, for example, user 

authentication mechanisms or persistency. 

• Technical Platform Services: These are services that are provided from the 

technical platform. They enable functionality like the registration of services 

or other infrastructure capabilities. There can be variability regarding those, 

e.g., regarding the exact range of services or their exact behaviour. 

• Domain-Specific Services: This includes any variability in domain-specific 

services where a service is modified, augmented by additional functionality, 

and otherwise adapted. In particular this may happen either while keeping 

the interface or modifying the service interface as well. 

• Service Composition and Processes: This includes all cases where the specific 

composition of processes is modified. It encompasses in particular any 

situations where a specific service is explicitly exchanged for another service 

satisfying the similar interface, but behaving differently. 

                                                      
4
 D5.1, section 2.6 and 5.2.2.2: All services should provide variability to be tailored to the customer’s needs. 
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• Service and Platform Deployment: This covers any form of variability that 

influences the specific deployment of a service5 (e.g., not deploying, location 

of deployment, parameterization, etc.). 

A variability modelling language for service-based systems and service ecosystems 

must support the definition of configurable elements appropriate to represent the 

above variability objects and their variability. In Section 4.4, we will further discuss 

possible solutions found in literature to represent these variabilities. 

In deliverable D2.2.1 we also introduced different forms of variations. The following 

forms of variations6 are rather generic, however, they get a specific meaning, as 

described below, in the context of service orientation: 

• Optional: A variability object may only be part of an installation under certain 

circumstances. This is called optional variability. This might be a service, or a 

specific aspect of the functionality of a service or of the underlying platform.  

• Alternative: Sometimes it is important that one of several variability objects 

is present, but the variation is in which of the objects to pick. This can be, for 

example, one of several possible service realizations that adhere to the same 

interface or alternative behaviours of a platform infrastructure.  

• Multiple selection: Sometimes multiple options from a set of variability 

objects can be selected. 

A variability modelling language for service-based systems and service ecosystems 

must support at least the definition of the above forms of variations. The definition 

may either affect only a single variability object (e.g. an optional variability object) or 

groups multiple variability object7 (e.g. a set of alternative variability objects). Thus, 

in case of alternative and multiple selections, these forms of variations require the 

definition of value ranges or arrays including cardinalities to represent the set of 

selectable variants and the number of possible selections. Alternative and multiple 

selection also require grouping of modelling elements, e.g. to define a set of 

alternatives of services from which the selected variant must be configured 

individually. The definition of arrays and the grouping of configurable elements also 

support large-scale variability by organizing related variabilities into manageable 

units. 

Other important forms of variability in service-based systems are parameterization 

and extension8. Parameterization may require the definition of an open-ended set of 

parameters. Many existing variability modelling languages also provide a concept of 

parameterization. However, in these cases there is typically a fixed set of possible 

                                                      
5
 D5.1, section 4.2.2: Generation of deployment descriptors and other configuration parameters based on 

product configuration. 
6
 D5.1, section 5.2.2: In the YMS case, the persistency mechanism is a classical optional selection while 

connectivity and authentication are multiple selections. However, configuring an entire WMS topology (D5.1, 

section 2.5.1) needs at least all three forms of variation. 
7
 D5.1, section 2.5.1, 2.5.5, 2.5.6: Needed to describe warehouse topology. D5.1, section 5.2.2: Needed to group 

variabilities for individual subsystems. 

8
 Interface variability was also mentioned in D2.2.1 as a possible form of variation, however, we regard this 

mainly as a form of variability implementation (as was appropriate in D2.2.1). In terms of modelling interface 

variability this can be mapped to the forms of variability identified above. 
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parameters. Thus, the addition here is strongly related to the next point: the concept 

of extension. Extension9 means that new variations can be supported that are not 

known at the point in time of defining the variability model. This is a typical aspect of 

service-based systems and hence must be adequately supported. It is also strongly 

related to the aspect of ecosystems, which we will discuss below.  

Quality in service-based systems is typically specified as Service Level Agreements 

(SLA) in terms of Quality of Service (QoS). QoS-requirements can be seen as a kind 

of constraint on the behaviour of a service that prescribes actions and/or states of 

this service that a service provider accepts and advertises to service consumers [34]. 

QoS may be expressed in terms of qualitative statements or quantitative (numerical) 

statements. One example of QoS is the availability of a service, which may vary 

according to the concrete selection of a service variant. For service availability a 

qualitative statement may be “high” while a quantitative statement could be 99 

percent. A SLA is a formally negotiated agreement between a service consumer and 

a service provider or between service providers that transcripts the common 

understanding about services, their priorities, responsibilities and service guarantees 

concretizing individual QoS statements [25]. A concrete SLA may specify that the QoS 

availability for a given service has to be greater than 90 percent. 

A variability modelling language for service-based systems and service ecosystems 

must support the specification of qualitative and quantitative properties10 describing 

QoS for individual configurable elements. Especially for the treatment of quantitative 

properties arithmetic expressions11 are useful. An example could be the overall 

quality of a service to be computed from responsiveness and availability. Constraints 

on QoS properties12 must be supported to express valid ranges and dependencies 

among QoS. Constraints may be used (in combination with arithmetic expressions) to 

map between qualitative and quantitative properties. 

Integration and configuration of service platforms are core topics of the INDENICA 

project for which in a concrete setting a large number of decisions has to be made. 

Examples of such decisions are which technologies should be used for integration or 

which services should be made available at which point in time (through 

configuration). Making such decisions at a certain point of time during the software 

development cycle typically fixes several cornerstones of a service-based system 

which cannot be changed later. Two particular types of such decisions are 1) the 

service technology used for integration which is in a concrete implementation 

typically interwoven with the functional code of the services and 2) the point in time 

                                                      
9
 D5.1, section 2.5.3: Upgradability and extensibility of a WMS within a fixed timeframe. 

10
 D5.1, section 2.5.2: QoS such as latency and throughput may determine some variabilities of a WMS. D5.1, 

section 3.2.2: Minimal latency is essential for a WMS. Availability may be a specific variability in a WMS. D5.1, 

section 4.1.1: Remote Maintenance Systems are created for environments with specific QoS requirements 

which, thus, may impact the configuration of such a system. 

11
 D5.1, section 2.5.2: Relation between size of goods and speed of conveyer system or speed of communication 

system may be expressed in arithmetic formulae or as constraints. D5.1, section 2.5.4: Runtime variability 

which depends on the rate occupancy indicator. 

12
 D5.1, section 2.5.2: The type of goods handled by a WMS may influence the specific distances and, thus, 

latency and throughput. D5.1, section 3.2.2: The operator may switch to high-availability. This leads to the 

activation of AppFabric’s built-in high-availability caching option. 
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when all decisions about a configuration space element must be made, the so called 

binding time13. Service technology and the range of possible binding times may be 

expressed as aspects of a configuration space element. Enabling the variation of 

these two aspects greatly increases the flexibility of integrating and configuring 

service platforms. We call this meta-variability, i.e. the systematic variation of 

aspects of a variability which are usually considered as fixed. 

A variability modelling language for the integration and configuration of service-

based systems must support the definition of meta-variabilities and their individual 

properties as well as the impact of meta-variabilities, i.e. to bind them as part of the 

configuration process. In addition, the restriction of meta-variability requires 

constraints, e.g. to express that configuring the binding time of one configuration 

space element restricts the binding time of a dependent configuration space 

element. 

Special requirements arise for variability modelling in service ecosystems. In the 

context of the INDENICA project we can extend the notion of service ecosystems to 

service platform ecosystems in which multiple different service platforms (or parts 

of them) form an integrated and domain-specific platform. The characteristics as 

well as the requirements for variability modelling in service ecosystems can be 

transferred to service platform ecosystems. In service (platform) ecosystems each 

platform holds its own variability model. The configuration of a domain-specific 

platform requires the composition of these models14. The composition mechanism 

must guarantee both the individual configuration of each (sub-) platform and the 

valid configuration across platform boundaries. The latter requires the definition of 

constraints among modelling elements of different variability models, which in turn 

requires a clear identification of each modelling element with respect to its source 

(the variability model of the respective platform). In addition, service platform 

providers may pre-configure some variability, e.g. the number of services that a 

specific customer is allowed to deploy. This results in a partial configuration15, which 

must remain over the course of integration, and further configuration of the overall 

domain-specific platform. 

A variability modelling language for service platform ecosystems must be modular 

and extensible to support the composition of multiple variability models as well as 

their individual configuration and the configuration across variability model 

boundaries. This facilitates the definition of constraints among modelling elements 

of different variability models. Each modelling element must be clearly identifiable 

with respect to its source (variability model). The modelling language also must 

support partial configuration to enable pre-configurations of modelling elements. 

                                                      
13

 D5.1, section 5.1.3: Platform bundles as a way of implementing variability can be deployed, updated and 

removed (even) at runtime. D5.1, section 4.2.2: Deployment descriptors are considered as one means of 

variability, thus also deployment time binding is required. 

14
 D5.1, sections 4.1.4 and 5.1.4: This may be part of the activities for combining the base platform with several 

domain services and their individual variability models.  

15
 D5.1, section 2.5: Combining and integrating base platforms to a whole VSP. 
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The requirements we identified in this section serve as a basis for a detailed 

discussion on advanced variability modelling concepts in Section 4. In this section we 

will analyse various options of addressing these requirements. Section 2.4 contains a 

full list of all requirements under "Requirements for Variability Modelling in Service-

Based Systems". 

2.3 Requirements from Industry 

While the previous subsections took a rather fundamental point of view with respect 

to variability, this section emphasizes the industrial perspective. We gathered 

requirements from the various industrial partners and used this as a basis for 

evaluating the analysis given in the preceding sections and summarized in Section 

2.4. By the very nature of this approach, the identified requirements overlap with 

the ones described so far. However, in this subsection we will emphasize the 

additional ones.  

In terms of basic modelling facilities, the importance of having more modelling 

elements than only Boolean variability availability has been unanimously raised. 

Thus, enumerations16, numbers17, or strings18 can be regarded as a must. The 

motivation for this was sometimes based on the need to represent Quality of Service 

characteristics, but other aspects like business constraints also played a role.  

The replication of features (feature cardinality) and constrained selection of 

elements within a group (group cardinality) [20] are also mentioned as important. In 

particular, the need to support the replication of sub-configurations19 has been 

repeatedly mentioned (corresponds to feature cardinality).    

Other aspects that impact the required basic expressiveness of the modelling 

approach are:  

• The capability to reference as part of the modelling language other (sub-) 

configurations explicitly and thus to express references to entities explicitly. 

• The capability to integrate higher-level configuration and generation 

capabilities (e.g., in the form of DSLs) into the approach.  

Some of the requirements are also related to the expressiveness of constraints. 

Especially the need for being able to use high-level (abstract) requirements to 

configure more detailed aspects and the need for numerical (computational) 

constraints was repeatedly emphasized. The need for numeric constraints was 

partially driven from the need to address Quality of Service aspects, but also partially 

from the business aspects. In the context of multiple binding times, it was also 

                                                      
16

 D5.1, section 4.2.2: Examples for the Remote Maintenance system are different databases or communication 

channels. D5.1, section 5.1.4: Examples for a YMS are the yard jockey state and its position. 

17
 D5.1, section 2.5.1: For example size of the warehouse, amount of high racks, height and length in storage 

units. D.5.1, section 2.5.5: Size, weight and shape of products in a warehouse. D5.1, section 5.1.4: Examples for 

a YMS are the number of docks or the number of goods. 

18
 D5.1, section 4.2.2: See the detailed options of the (pre)configuration of the Mobicents platforms as well as 

server and communication settings of WMS or YMS servers. 
19

 D5.1, section 2.5.1: Cardinalities and restrictions of multiple selection are in particular relevant for specifying 

and configuring WMS topologies. 
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emphasized that constraints might be binding-time-dependent and, thus, require 

binding-time-specific treatment.  

Some of the requirements that were brought up also concerned the ease of 

performing configurations in practice. However, we expect that some of these 

aspects can be handled through adequate tool support, independent of the specific 

modelling approach. Thus, they do not need to be part of the variability 

management approach per se. We summarize them here for the sake of 

completeness:  

• The need to be able to provide views (according to different criteria) of the 

variability model to reduce the complexity a user has to deal with.  

• The need was raised to work with defaults (e.g., in the form of business 

profiles) to simplify the task of configuration.  

Another category of requirements that was mentioned on various levels is the need 

to be able to deal with several variability sub-models. This mostly overlaps with the 

issue of ecosystems, which we addressed above. This issue was raised in several 

forms:  

• The ability to deal in an integrated manner with variability models that cover 

multiple sub-systems20 (e.g., different types of services that come from 

different backgrounds). 

• The need to deal with the integration of legacy product lines, in particular, to 

interface with their configuration processes. 

• The need to decompose complex variability models to a set of sub-models 

that can be handled more or less independently. 

Some requirements were also more technological in nature. These concerned the 

alignment of different technology layers or components to achieve a well-

orchestrated realization of the variation and the need to be able to influence specific 

configuration aspects like technical platform services.  

We will summarize the resulting requirements in the following section and also 

outline the overlap with the requirements that we identified so far. 

2.4 Summary 

In this section, we discussed what we regard as key requirements for the variability 

modelling approach in the INDENICA project. We gathered those requirements from 

discussions of general demands in variability modelling, the investigation of demands 

for variability modelling in the context of service-based systems and service 

ecosystems, and the information from the industrial partners on their current (and 

expected future) situation. We will now summarize the identified requirements for 

future reference21: 

                                                      
20

 D5.1, section 4.2.2: For example subsystem variants in the Remote Maintenance system. 
21

 Throughout the description of the requirements, we omit the phrase "the variability modelling approach 

should support the... " for the sake of simplicity and readability.  
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General Variability Modelling Requirements 

G1 Definition of a configuration space that represents all variabilities as a 

composition of basic modelling elements. 

G2 Definition of additional modelling elements (attributes) that may refine the basic 

modelling elements and allow representing additional aspects of variability. 

G3 Definition of different types of value ranges, including non-Boolean variability. 

G4 Definition of product configurations, that allow describing individual 

configurations based on the definition of the configuration space. 

G5 Definition of constraints to restrict the combination of elements defined in the 

(unconstrained) configuration space. 

G6 Definition of complex dependencies among the individual variability elements 

(and their attributes). 

Requirements for Variability Modelling in Service-Based Systems 

S1 Definition of the variability relevant to service platform infrastructure, technical 

platform services, domain-specific services, service composition and processes 

and service and platform deployment. This requirement is an extension of the 

general requirement G1. 

S2 Definition of (at least) the following forms of variation: optional, alternative and 

multiple selection. 

Large Scale Variability22 

S3 Grouping of related variability elements, e.g. to define a set of alternative 

services from which the selected variant must be configured individually. This 

requirement is an extension of the general requirement G1 and helps to 

organize large scale variability. 

S4 Definition of "arrays" to represent sets of cases that need to be configured while 

the relevant configuration possibilities have the same structure.  

S5 Definition of strong dependencies in the sense that general (abstract) decisions 

lead to the configuration of (multiple) lower-level decisions.  

Quality of Service  

S6 Specification of qualitative and quantitative properties describing QoS for 

individual configurable elements. 

S7 Specification of arithmetic expressions to specify derived quality properties (an 

example could be the overall quality of a service to be computed from 

responsiveness and availability). 

S8 Definition of Constraints on QoS properties to express valid ranges and 

dependencies among QoS. Constraints may be used (in combination with 

                                                      
22

 Further requirements for large-scale development can be found under eco-systems, as they are specific to the 

eco-system case.  
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arithmetic expressions) to map between qualitative and quantitative properties. 

This requirement extends the general requirements G5 and G6. 

Meta-Variability 

S9 Definition of meta-variabilities and their individual properties. This requirement 

is an extension of the general requirements G1 and G2. 

S10 Definition of the impact meta-variabilities have on the implementation process. 

This requirement is an extension of the general requirement G4. 

S11 Definition of constraints on meta-variabilities, e.g. to express that configuring 

the binding time of one configuration space element restricts the binding time 

of a dependent configuration space element. This requirement is an extension of 

the general requirements G5 and G6. 

Eco-Systems 

S12 Composition of multiple variability models as well as their individual 

configuration and the configuration across variability model boundaries. 

S13 Definition of constraints among modelling elements of different variability 

models including a clear identification of each element with respect to its 

source. 

S14 Partial configuration of variability models to enable pre-configuration and reuse 

of existing variability models in new contexts. 

S15 Extension of the configuration space by variabilities that have not been taken 

into account previously (open variation). This can be seen as a special case of 

S12, however, it goes beyond it by demanding that existing variations can also 

be extended at a later point. 

S16 Separation between local and global variability implementation reusing 

variability models (modularity). In particular, this leads to the requirement of 

variability interfaces. 

Requirements from Industry 

I1 Definition of non-Boolean variability. This is subsumed by requirement G3. 

I2 Definition of cardinality (i.e., making – restricted – choices in groups of elements 

and replicate complete groups in order to provide individual configuration 

possibilities for the various copies. This can be seen as an extension to the 

requirement S3. 

I3 Referencing of other (configuration) elements. 

I4 Integration with existing domain-specific languages. Due to its specialized 

nature, we consider this as a low-priority requirement, but analyse this further 

in Section 3.6. 

I5 Automatic deduction of lower-level configuration choices from higher-level 

configuration selections. This is subsumed by requirement S5.  

I6 Definition of numerical constraints. This is subsumed by requirements G6, S7, 

S8. 
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I7 Definition of binding-time dependencies of constraints. 

I8 Definition of different views (according to different criteria) of the variability 

model to reduce the complexity a user has to deal with. 

I9 Working with defaults, including complete default profiles describing defaults. 

This may be handled as well on the tool level. 

I10 Integrated configuration of modularized (and composite) product lines. This is 

mostly subsumed by S12 and S15. 

I11 Integration with legacy product lines. In particular, the harmonized 

configuration of different product lines. This is mostly subsumed by S12 and S15. 

The identified requirements serve as a basis for our discussion on core variability 

modelling concepts in Section 3 and advanced variability modelling concepts in 

Section 4. In addition, we will reconsider these requirements in our description of 

the INDENICA variability modelling approach, which we will define in Section 5. 
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3 Core Variability Modelling Concepts 

The purpose of this section is to provide an overview of general variability modelling 

concepts, which we will use as a basis to select the core concepts of the INDENICA 

variability modelling approach. We will describe different categories of 

expressiveness of modelling concepts. The expressiveness of the concepts will 

increase over the course of this discussion. Our focus will be on the modelling 

elements introduced by these categories and the different constraint and operator 

types available for dependency management. We will further include existing 

approaches that use the specific concept and compare the benefits and drawbacks 

that come with the respective expressiveness. A running example will illustrate the 

various levels of expressiveness in variability modelling throughout these sections. 

We will start with an introduction of this example in Section 3.1. 

The following sections will discuss five different levels of expressiveness from less 

powerful to more powerful. Of course, different languages cannot exactly be put in 

different levels and matched with different expressiveness of constraints. This would 

actually form a two-dimensional matrix. Thus, our definition of levels is an 

approximation. 

3.1 Running Example 

In this section, we introduce a running example which will be used throughout 

Section 3 to illustrate the various levels of expressiveness in variability modelling. 

The example will evolve with each level of expressiveness discussed in the following 

sections. 

The example will model the variability of the instantiation and deployment of a 

content-sharing application. A content-sharing application allows its users to upload, 

annotate, release and share content of various types. In this example, concrete 

applications may differ with respect to: 

• The supported content types such as text, video, audio, 3D content, or binary 

(large) objects (BLOBs). 

• The hosting infrastructure which consists of a) a web container being 

responsible for serving the content and b) the database, which stores user 

and content data. 

• The deployment target, which may either be a traditionally hosted server or a 

cloud environment. The cloud environment may be private, like a local 

installation of the Eucalyptus23 cloud software or public, in this example we 

will allow from the Amazon24 or Azure25 cloud. 

                                                      
23

 http://open.eucalyptus.com/ 

24
 http://aws.amazon.com/de/ec2/ 

25
 http://www.microsoft.com/windowsazure/ 
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Without going into functional details of the content-sharing application, the 

variabilities introduced by content types, web container, database and deployment 

target allow to derive a large number of different application instances. Whether we 

can describe a specific set of applications at all or whether it is possible to state 

individual details depends on the expressiveness of the languages used for modelling 

variabilities and dependencies. In the following subsections, we will successively 

augment the modelling of the running example with the restrictions and 

dependencies below: 

1) At least one content type must be present as otherwise the content-sharing 

platform is useless. 

2) To ensure acceptable quality of service, the maximum bit rate for video 

content on the Tomcat web container is 128 kBit/s. 

3) The combination of supported content types may be restricted based on the 

capabilities of the web container or the deployment platform, e.g. due to 

load problems only a limited number of content types may be available on 

the traditional deployment target. 

4) Some content types may be served by a separate web container in order to 

configure a simple load balancing mechanism, for example 3D content should 

be served by a JBoss server. As a further extension, a web container may be 

configured to retrieve its content from a specific database. 

5) Content types may be transformed and the result may be shared. Such 

transformations should be configured in terms of configuration chains, such 

as the textual representation of the audio track of a video. As 

transformations may be resource-consuming and, thus, affect the 

performance, on the traditional platform only simple and resource saving 

implementations should be deployed while resource-consuming high-quality 

transformations may be used on the cloud platforms. 

The concrete notation used for illustrating the individual versions of the running 

example will be explained as part of the discussion of the levels of expressiveness in 

the following subsections. 

3.2 Basic Variability Modelling 

The simplest language, we will discuss, is a purely Boolean representation of 

variability elements. This is the case in basic feature modelling. Also on this basic 

level, we will restrict ourselves to binary constraints where one feature can be 

mutually exclusive with another one or may require another one. 

Feature diagrams were first introduced as part of the Feature Oriented Domain 

Analysis (FODA) feasibility study in [40]. The intention of this method is the 

identification of prominent or distinctive features. These features are attributes of 

the system that directly affect end-users. They are user-visible aspects or 

characteristics of the domain. The features define both common aspects of the 

domain as well as differences among related systems in the domain. Thus, feature 

modelling is a kind of variability modelling, whereas feature diagrams serve as a 

communication medium between users and developers. 
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Meanwhile, there exist a plethora of feature modelling approaches, each developed 

for a specific purpose. At this point, we dispense with a detailed analysis of existing 

feature diagram notations as this can be found in literature, e.g., in [65]. This 

semantics also forms an input to our discussion of variability modelling described 

here. 

Feature diagrams consist of mandatory, optional and alternative features. They are 

typically hierarchically organized, thus the selection of a sub-feature requires the 

selection of its parent feature(s). Unlike FODA features diagrams which are trees, 

today’s feature diagrams are in general single-rooted directed acyclic graphs (DAG), 

because they represent graphically requires and mutually-exclusive relations among 

features. However, newer approaches are not necessarily more expressive than 

FODA. The FODA approach is capable of handling non-Boolean features like 

“Horsepower”, while many feature diagram notations can only handle Boolean 

features. Further, FODA makes use of textual “Rationales” to support the selection 

process.  

Figure 1 depicts the running example as a basic feature diagram. The content-sharing 

application consists of an application part and a target platform part. For the 

application the available content types are modelled as optional features, i.e. each of 

the content types as well as arbitrary combinations may be selected. For the 

container one may choose among the alternatives Tomcat , JBoss  and IIS  

(Microsoft Integrated Information Server). Similarly, the database may be MySQL, 
Amazon S3  or Azure SQL . The target platform part is either Traditional  or 

Cloud . Cloud is further decomposed into private  clouds (Eucalyptus ) and 

public  clouds (Amazon or Azure ). 

The composition rules shown below the feature diagram restrict the set of valid 

configurations. While the Traditional  target platform requires MySQL (this 

implicitly excludes the other alternatives), for Cloud  target platforms MySQL must 

 

Figure 1: Running example using basic feature modelling. 
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not be selected as it is excluded. Eucalyptus  and Amazon require the selection 

of Amazon S3  (excluding the other alternatives) while Azure  requires Azure 
SQL. Additionally, we visualized the composition rules as dependencies in the 

feature diagram (either textual rules or dependency arrows are sufficient while 

visual dependencies are not part of the original FODA notation). 

This basic feature modelling approach is not sufficient to model the restrictions listed 

in Section 3.1. In particular a content-sharing platform is useless if no supported 

content type is selected. Modelling such situations requires cardinalities, which we 

will discuss in the next section. 

3.3 Cardinality-Based Variability Modelling 

In this section, we introduce cardinalities to the previously described modelling 

approach. Two different types of cardinalities can be distinguished: feature 

cardinalities and group cardinalities. Feature cardinalities facilitate multiple 

instantiation of a feature, whereas group cardinalities describe how many sub-

features of a group of features can be selected. 

The two concepts can be combined. This kind of grouping allows the multiple 

selection of sub-features. This new grouping mechanism can be treated as a kind of 

group cardinalities. These cardinalities specify a minimum and maximum number of 

sub-features, which must be selected. Thus, alternatives can be modelled with <1-1>, 

or-grouping with <1-n> group cardinalities. 

A detailed analysis of these extensions can be found in [18]. 

Cardinalities can be seen as a specific kind of constraint. Besides this, no other type 

of constraint directly "belongs" to this level. However, we will also introduce on this 

level arbitrary Boolean expressions as a basis for constraints. This is obviously an 

extension of requires and excludes relations, which can always be written as a binary 

Boolean relation of the form A → B (A requires B) or A → ¬B (A excludes B). Thus, 

arbitrarily complex Boolean constraints actually provide a generalization (they might 

be simulated using requires and excludes, however). 
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Figure 2 shows the extended running example with a feature group for content types 

and a cardinality, which restricts the number of selected options for a valid 

configuration, here that at least one content type must be selected. Further, the 

Boolean constraint (BLOB or Video) → (JBoss or IIS) restricts that if 

either a BLOB or Video -content is used than as container JBoss or IIS  must be 

used. Note, that in this special case, this can also well simulated with requires and 

excludes relations, but our main point is the emphasis that in general people can 

express their intentions more precisely. While now arbitrary Boolean constraints 

(which encompass inclusions and exclusions) may be expressed, it is not possible to 

state a basic QoS constraint such as: when selecting Tomcat  the bitrate of a Video  

is at maximum 128 kBit/s. We will discuss such non-Boolean constraints in the next 

section. 

3.4 Non-Boolean Variability Modelling 

The example in the previous section showed that it would be good to be able to 

describe variability not only in terms of Boolean variability, but also in other types 

like integer, string, etc. This is summarized as non-Boolean. In [56], the authors 

discuss that non-Boolean variability plays an important role in practice. In this 

section, we will first introduce the concept of non-Boolean expressions in variability 

modelling and the respective constraint mechanisms, then we discuss some 

approaches and illustrate the use of non-Boolean expressions in our running 

example. 

In variability modelling, the definition of non-Boolean elements, like a configurable 

element that assumes integer values, either requires the definition of a type or the 

exact (range of) values that the element may assume. In both cases, each value 

represents exactly one variant of a variability of the artefact space. Constraints 

restrict the selection of these values to yield valid value combinations. The definition 

of these constraints requires additional operator types, such as relational, arithmetic 

or string operators. The operator types typically depend on the element types that a 

variability modelling approach supports. 

 

Figure 2: Running example using cardinality-based feature modelling. 
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Non-Boolean elements and expressions are basic modelling elements in decision 

modelling approaches [64]. Schmid and John [63] as well as DOPLER [24] support 

decision types like Boolean, string, enumeration, integer, real, and additional sub-

ranges as well as set-based data types. Synthesis [67] and VManage [28, 46] also 

support decision types like date and time. In [9], the authors discuss that non-

Boolean elements extend basic feature modelling, e.g., to define cardinalities among 

feature sets or additional attributes to describe properties of a feature. Different 

feature modelling approaches exist that support these extensions and the definition 

of constraints among them [6, 7, 8, 20, 21, 39, 69, 74]. 

Non-Boolean elements and expressions enable the definition of multiple values for 

each configurable element which yield a fine-grained structure of configuration 

spaces. The definition of constraints not only restricts the combination of 

configuration space elements but also facilitate the calculation of element values by 

using arithmetic operators. The major drawback of non-Boolean expressions is their 

analysability as Boolean expressions are NP-hard and non-Boolean expressions 

extend this complexity to be undecidable [56]. 

Figure 3 depicts the extended variability model in order to express a non-Boolean 

QoS constraint restricting the maximum bitrate of videos provided by a certain web 

container. The Video  variability is specified by the integer attribute Bitrate  

which is used in the non-Boolean constraint relating Tomcat  to the maximum video 

bitrate of 128 kBit/s. Note that the variability model does neither specify the origin 

of the value nor the binding time of the bitrate, i.e. the value might be provided 

during configuration prior to runtime but it might also be left open as a runtime 

variability to be obtained from a runtime monitoring service and to control runtime 

reconfiguration of deployed web containers. 

The constraints discussed so far represent expressions on the elements used in the 

variability model such as variabilities, attributes or dependencies. A further (minor) 

increase of the expressiveness could allow expressions on meta-model information 

such as constraints on the cardinality of a variability. Let a.card  be the cardinality 

 

Figure 3: Running example with feature attributes and non-Boolean constraints. 
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of the variability a. Then we can model that for an instantiation of the content-

sharing application to be deployed to a Traditional  target platform at most two 

content types may be selected: 

Traditional ˄ Content-Type.card ≤ 2 

The delivery of some of the content types such as 3D or BLOBs may be resource 

intensive and impact the performance of the entire content-sharing application. An 

approach to improve performance could be the following simple load balancing 

mechanism: Serving the resource intensive content by separate subordinate web 

containers which are deployed to different physical machines or virtual cloud 

instances. Then, a request to such content would be delegated from the main 

application web container to the subordinate web container. Modelling this load 

balancing mechanism as configuration options using the variability modelling 

approaches discussed so far, we would need to replicate the container variability as 

a decomposition of 3D and BLOB. This is illustrated in the model fragment shown in 

Figure 4 where replicated sub-trees are highlighted as gray areas.  

Feature cardinalities as introduced in [19] can be considered as a modelling 

alternative to reduce the number of replicated sub-trees. Figure 5 depicts a 

modification of the running example in which multiple instances of the content type 

feature can be defined. Each instance of the content type feature is flagged by an 

individual string indicating the selected content type, such as Content-

Type(“BLOB”) . At a first glance, this modelling alternative seems to reduce the 

number replicated sub-trees but it also implies that each (and not only selected 

content types) may be served by an individual container. Further, the modelling in 

Figure 5, which is aligned to the examples in [19], defines an unnecessary openness 

 

Figure 4: Replicated sub-trees in the running example (model fragment). 
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stated in terms of the string attribute, i.e. not only strings representing valid content 

types may be used. This may be avoided using enumeration types. 

However, in both cases an extension of the variability modelling capabilities by 

configuration references can help solving the problem of replicated sub-trees. 

3.5 Configuration References 

In this section, we introduce the concept of configuration references. In the first 

part, we explain configuration references, the elements to define such references 

and the corresponding dependency management. We will discuss existing 

approaches that include configuration references in their variability modelling 

concept. Finally, we will illustrate configuration references using the running 

example.  

A configuration reference is a link from a configurable element A to a configurable 

element B specifying that the configuration capabilities defined by B become 

available in the context of A. Primarily, linked configuration capabilities are made 

available in an exclusive form, i.e. during the configuration process individual values 

can be specified for each source of a configuration reference. However, linked 

configuration capabilities may also be shared (as e.g. discussed in [4]). The concept 

of referring to and, thus, reusing configurable elements is similar to object 

references in object-oriented languages. There, (visible) capabilities of a class 

become available through the object reference. The target of the object reference 

may be a shared or an individual instance and even the reference may be shared 

(static). 

By defining a configuration reference, the constraints for referred configurable 

element B naturally apply to the configuration capabilities, which become available 

in the source A. Further, A may define constraints to restrict the use of the referred 

configuration options within its own context. Additionally, the constraint language 

may be augmented to provide specific operators for configuration references. For 

 

Figure 5: Replicated sub-trees using feature cardinalities (fragment). 
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example, in case that the variability modelling language supports inheritance of 

configurable elements, a typeOf operator may constrain the concrete subtypes of B 

which may be used in the context of A. 

Bak et al. include configuration references in their Class Feature Relationships 

(Clafer) approach [4]. The authors use abstract Clafers as a way of reusing parts of 

feature models. These abstract elements cannot be selected or deselected as part of 

a product configuration, unless they are extended by a concrete element. References 

then define relations to such concrete elements while mapping constraints define 

their individual configuration. Shared targets may explicitly be forbidden for 

individual references in Clafer. Reiser introduces configuration links in his 

Compositional Variability Management framework (CVM) [59]. CVM reduces the 

complexity of real-world feature models by decomposition. A feature model in CVM, 

thus, may be a composition of multiple (sub-) feature models. Configuration links 

between (sub-) feature models allow the definition of how to configure a feature of a 

target model depending on the given configuration of a source model. Boucher et al. 

offer the definition of custom variability types that can be reused in a variability 

model based on their Text-based Variability Language (TVL) [12]. Custom variability 

types factor out recurring variable elements. Each feature that includes an element 

of this custom type is able to configure its variant individually. 

The benefits of configuration references in variability modelling are the reduction of 

complexity and the relation between multiple, individually configured elements of a 

configuration space. Configuration references reduce complexity by reusing 

configurable elements in the configuration space. In addition, each new reference 

allows the configuration of an individual instance that is exclusive for the referring 

element. The major drawback of configuration references is their analysability. 

Similar to non-Boolean expressions we introduced in the previous section, variability 

models including configuration references are undecidable.  
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Figure 6 shows configuration references to specify the configuration of the simple 

load balancing mechanism introduced in Section 3.4. We apply the notation from 

[73], i.e. we denote configuration references in light grey. Additionally, we highlight 

the references in Figure 6 as additional arrows. The variability model in Figure 6 

specifies now that 3D content or BLOBs may have individual web containers, which 

are defined by the Container  introduced as a decomposition of Application .  

While configuration references provide more expressiveness than the previous levels 

of description, there are still exist cases that cannot be fully described with this 

expressiveness. Thus, sometimes the need for using domain-specific languages also 

for variability modelling languages is voiced [73]. We will address this case in the 

following section. 

3.6 Domain-Specific Languages 

The idea of a domain-specific language (DSL) as discussed in [29, 32, 33] is to target a 

particular kind of problem in an intuitive way using concepts and elements, which 

are well-known in the problem domain rather than general-purpose concepts. In this 

section, we will discuss options using DSLs in variability modelling, which we 

identified from literature. We will also illustrate the use of DSLs in the context of our 

running example. 

We identified the following strategies for using DSLs in variability modelling: 

1. Use an existing domain-specific language and exploit some of the already 

defined elements to realize variability modelling. 

2. Define a domain-specific variability language to provide means for 

expressing variability and product configurations in a problem domain. 

 

Figure 6: Running example with configuration references. 
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3. Extend a general-purpose language by a DSL which provides domain-specific 

variability modelling concepts. 

4. Extend a domain-specific language by concepts taken from a general-

purpose language to increase the expressiveness of the DSL. 

5. Combine languages, in particular of DSLs, to improve reuse of existing 

concepts in a more focused language. 

6. Instantiate a DSL from a meta-model, e.g. a meta-DSL, which describes a 

family of variability-enabled languages. This leads to languages with a 

common core, e.g. to provide common mechanisms for traceability. 

The two main approaches for realizing the extension and combination of languages 

are (a) to derive a new combined language (called amalgamated approach in [36]) 

and (b) to apply loose coupling, e.g., using links (called separate-language approach 

in [36]). 

Several concrete approaches using DSLs for variability modelling are described in 

literature. We will discuss some selected approaches in the following according to 

the sequence of strategies listed above. Matlab / Simulink is a widely used tool in the 

embedded systems domain. The authors in [10, 11] use Matlab / Simulink as an 

existing domain-specific language and map concepts from a Matlab / Simulink model 

to a variability model at the beginning of domain engineering and derive a 

configured model as result of application engineering for final processing by Matlab / 

Simulink. In [73] the authors discuss specific DSLs for describing the product 

configuration of a fountain and an alarm system menu product line. In this work, the 

authors exploit hierarchical nesting of DSL elements to constrain valid product 

configurations. FAMILAR, as described in [1], is a domain-specific language for 

feature modelling which particularly supports inter-model manipulations such as 

merging. In [49], the authors discuss the extension of a general-purpose language by 

a DSL. There, the authors extend the Meta Object Facility (MOF) [51] by variability 

constructs using aspect model weaving. In several approaches such as [16, 35, 36, 

75, 76], the Unified Modelling Language (UML) [53] as a general-purpose modelling 

language is extended with variability modelling concepts. The reversed case, i.e. 

extending a domain-specific language by a variability modelling language is 

discussed in [36] where the authors enrich a train control language by their common 

variability language (CVL) [55].26 The combination of several DSLs for variability 

modelling is discussed in [73]. The authors combine one DSL for expressing the 

logical structure of a product with a second language for specifying behavioural 

aspects of the product. The application of a DSL as a language for describing DSLs is 

the topic of [77]. In this work, the authors describe VML*, a family of languages for 

variability management to derive variability-enabled languages for the entire 

software development lifecycle exemplified by a requirements and architecture 

modelling language. 

                                                      
26

 The CVL proposal is available to OMG members via the OMG website; non-members can obtain it, on request, 

from Oystein Haugen, the proposal editor. 



INDENICA D2.1 

 

  31

Using DSLs in variability modelling requires also an appropriate constraint language, 

i.e. concepts representing variability in a DSL as well as their properties must be 

accessible for expressing constraints on them. Most of the publications discussed 

above do not give details about the applied type of constraint language. Therefore, 

we describe the literature findings for two DSL-based approaches. The authors of 

[49] support required and (mutual) excluded variabilities, i.e. a type of constraint 

language as discussed for basic variability modelling in Section 3.2. FAMILAR [1] 

supports propositional logic, i.e. is based on Boolean constraints discussed in Section 

3.2. 

Some benefits of using domain-specific concepts in general as well as in variability 

modelling are improved communication and understandability, increased 

expressiveness, a concise language, a typically higher level of abstraction, better 

scalability within the problem domain and an increased productivity [29, 32, 33]. In 

contrast, proper design of a DSL is a difficult task which implies upfront investments 

[32, 33]. Further, each DSL increases the existing zoo of languages aggravating the so 

called ghetto language problem, i.e. staffing becomes difficult due to the fact that in-

house used DSLs are not known outside a company [29]. Moreover, combining DSLs 

into an amalgamated language becomes complicated when elements and concepts 

overlap and need specific approaches, as for example described in [14, 42]. 

In the remainder of this section, we will give examples for two basic strategies of 

using DSLs in variability modelling, namely defining a DSL for variability modelling in 

the context of our running example as well as extending a DSL by concepts from a 

general-purpose language. We will not give examples for the remaining strategies 

discussed above as we only want to provide some illustration using these examples. 

We illustrate the approach of defining a specific DSL for variability modelling in the 

context of the running example. In the sections above, the structure of the variability 

models, e.g., shown in Figure 6 was mainly determined by the decomposition 

hierarchy of configurable elements, i.e., a tree structure. We will rely on this tree 

structure to derive a textual concrete syntax for a domain-specific variability 

modelling language following the approach in [73]. For the presentation of the 

examples we use a notation inspired by the examples in [73]. Figure 7 depicts the 

grammar definition of a simple DSL for configuring content sharing applications. 

Similar to the variability models shown in the sections above, the grammar allows 

specifying the application part and the target platform (line 1). The application part 

(identified by the string “Application”) is subdivided into content type, container and 

database (line 2). Line 3 specifies that at least one and at maximum five content 

types may be selected for a concrete application, namely text, video (which is further 

1: ContentSharing –> ”Content-Sharing” App Platform  

2: App -> ”Application” ContentType Container Datab ase  

3: ContentType -> ”Content-Type” (”Text” Video ”Aud io” 3D BLOB)<1-5> 

4: Video -> ”Video” “bitrate =” IntLiteral 

5: … 

6: IntLiteral -> -?(0..9)*  

Figure 7: A DSL for configuring content sharing applications (fragment). 
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specified by the bitrate in terms of an integer literal), audio, 3D and BLOB. The 

translation of the remaining structure of the variability model to the DSL is 

straightforward and not detailed here. Two example configurations which differ in 

the selected content types are shown in Figure 8. 

The DSL depicted in Figure 7 captures only the decompositions of the content 

sharing variability model shown in Figure 6, i.e. it allows specifying all possible 

configurations including those which are actually forbidden by constraints. To enable 

constraints in our example, we can extend the DSL by OCL [52] or Alloy constraints 

[38]. Further, we can extend the DSL by primitive data types e.g. taken from Java in 

order to avoid repeated definitions of well-known language constructs. Figure 9 

illustrates the extended DSL and also shows one of the constraints used in the 

running example. By adding further language constructs taken from a programming 

language also Turing-complete constraints can be realized as for example done in 

DOPLER [24] by embedding Java fragments as constraints. 

In this section, we have discussed the application of DSLs for variability modelling by 

identifying six different usage strategies from literature. On the one hand, defining 

own or extending existing variability modelling languages by required modelling 

concepts can greatly extend the expressiveness of a variability modelling approach. 

On the other hand, the analysability of variability models specified in DSLs suffers or, 

in extreme cases, is not possible anymore, e.g. when constraints given in a Turing-

complete programming language are used. For the INDENICA variability modelling 

language we believe that DSLs may be considered for carefully extending a core 

variability modelling language, e.g. to realize several layers of expressiveness or to 

enable domain-specific constructs in order to simplify the application of variability 

modelling. 

3.7 Summary 

In the previous sections we discussed different categories of expressiveness of 

variability modelling concepts, ranging from less powerful to more powerful. The 

Content-Sharing 

  Application 

    Content-Type 

      Text 

      Video bitrate = 128 

… 

Content-Sharing 

  Application 

    Content-Type 

      Text 

      Audio 

… 

Figure 8: Example instantiations of the DSL in Figure 7 (fragment). 

1: ContentSharing –> ”Content-Sharing” App Platform  

2: App -> ”Application” ContentType Container Datab ase  

3: ContentType -> ”Content-Type” (”Text” Video ”Aud io” 3D BLOB)<1-5> 

4: Video -> ”Video” ”bitrate =” int  

5:    [Tomcat implies Video.bitrate <= 128] 

6: … 

Figure 9: DSL extended by OCL constraints and primitive Java datatypes (fragment). 
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discussion of each category included the introduced modelling elements and the 

dependency management capabilities. This provides a basis for our definition of the 

core variability modelling language in Section 5. 

The above discussion of different modelling concepts together with our discussion of 

requirements in Section 2 showed that we will actually need a rather expressive 

modelling language. Thus, non-Boolean variability is a must from the point of view of 

industrial service-based systems. Configuration references as well as complex 

settings seem to be often relevant and are thus likely candidates for inclusion in the 

INDENICA variability modelling language. However, this must be done so that the 

base concepts do not become unnecessarily complex. In addition, a way for 

embedding DSLs must be found. Again, ease of use for the most standard issues is 

important, so we expect to rely on a simple core language which is extended in a 

way so that its use is not complicated for users who do not need the more advanced 

features.   
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4 Advanced Variability Modelling Concepts 

The purpose of this section is to introduce additional variability modelling concepts 

that arise from the specific requirements regarding variability modelling in service-

based systems. We discussed these requirements in Section 2.2. Thus, Section 4.1 

will discuss required variability modelling capabilities in service ecosystems in 

general. In Section 4.2, we will discuss Quality of Service (QoS) and Service Level 

Agreements (SLA) and the variability modelling concepts used in literature in this 

context. Section 4.3 will discuss meta-variability. This describes the variability of 

aspects (e.g., binding time) that are often treated as constant in a variability 

implementation. Finally, Section 4.4 will discuss extensions to variability modelling 

that address on service-technology specific capabilities. We will discuss different 

service technologies and describe the mapping of relevant aspects to modelling 

elements. 

4.1 Service Ecosystems 

A service ecosystem is a large and non-trivial collection of different services that 

interact and cooperate across technology- and business-boundaries [60]. In the 

context of the INDENICA project we extend the notion of service ecosystems to 

service platform ecosystems in which multiple platforms (or parts of them) form an 

integrated and domain-specific platform. Key characteristics for variability modelling 

in service ecosystems can be transferred to service platform ecosystems. These are 

modularity and extensibility to support the integration of multiple variability models, 

their individual configuration as well as the configuration across variability model 

boundaries, and partial configuration to enable pre-configuration of modelling 

elements. 

In this section, we discuss concepts for extending the basic INDENICA variability 

modelling language to satisfy the above characteristics and requirements of service 

(platform) ecosystems. In literature, different approaches are described that deal 

with composition and extensibility in variability modelling. Some of these 

approaches focus explicitly on the integration of models or modelling elements of 

different languages [27, 37]. These approaches are reasonable in the general context 

of software ecosystems but in the INDENICA project, we focus on the use of a single 

variability modelling approach. In the following, we will discuss specific modelling 

concepts that focus on the composition and extensibility of homogeneous models 

and modelling elements used in literature and conclude on relevant concepts for 

variability modelling in service (platform) ecosystems. 

Czarnecki et al. [20] propose a cardinality-based feature modelling approach in which 

special leaf nodes act as extension points to connect additional feature models of 

the same approach using feature diagram references. This extension mechanism 

enables both the definition of constraints among features of the basic and the 

connected models and the (valid) configuration across model boundaries. The 

authors also introduce the notion of staged configuration meaning that certain 

stakeholders may eliminate only some configuration choices of a feature model 
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before (on the next stage) other stakeholders may configure the remaining 

variabilities. This requires a specialization process that transforms a feature model 

into another model, such that the latter model is a (specialized) subset of the former 

one. Rosenmüller et al. [61] integrate feature models of different Software Product 

Lines (SPLs) using composition models. This approach is based on object-oriented 

concepts in which a class represents a single SPL while an object of a class represents 

an instance of this SPL (the feature model and the model configuration respectively). 

This allows for the definition of constraints among multiple feature models on the 

level of composition model classes and instances. The latter defines restrictions 

similar to configuration references introduced in Section 3.5. The information of such 

a composition model serves as a basis for the automatic derivation of a configuration 

interface that guides a user through the configuration of all SPLs. El-Sharkawy et al. 

[26] use a variability modelling language based on [63] to model both, each SPL 

separately and the composed SPL. The common language enables simple 

composition of the homogeneous models. Namespaces ensure the clear 

identification of variabilities in the composed model. This facilitates the definition of 

constraints among modelling elements of the individual models. 

In practice, additional problems and challenges of variability modelling in ecosystems 

arise. Brummermann et al. [13] discuss the challenges of distributed evolution of 

variability in information system ecosystems in the context of HIS GmbH. In this 

scenario third-party vendors and customers may add configurations or override 

(parts of) the base configuration that yield an unmanageable set of variabilities for 

the company. The results are version- and update-conflicts when the base system 

evolves. The authors address these conflicts by a formalism that supports structured 

difference calculations to identify the effective changes that occurred in a new 

version. Schmid [62] focuses on distributed software development and identifies 

characteristics of a variability management approach particularly suited for such 

development scenarios. He identifies a set of concepts introduced in Debian Linux [2] 

and Eclipse package management [70] that are helpful for distributed variability 

management: decomposition (assignment of responsibilities for different parts of a 

variability model to different teams), version-based dependency (usage of version 

information of the different parts to define what combinations are acceptable), 

information hiding (explicit definition of the visibility of variability), variability 

interfaces (extension points and their parameterization for extending base variability 

models) and inversion of dependency (additional variability models or modelling 

elements know the basic variability model that they extend, but not vice versa). 

Based on the approaches for variability modelling in ecosystem we can sketch the 

realization of the following specific requirements listed in Section 2.2: 

• Composition of multiple variability models, open variation and modularity 

(S12, S15, S16): Composition of variability models will be facilitated by 

extension mechanism like the definition of extension points and variability 

interfaces. This mechanism will allow the clear separation of base and 

additional modelling elements (including the responsibility for the specific 

parts) and enables the independent configuration of variability models and 

the configuration across model boundaries. 
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• Definition of constraints among composed variability models and clear 

element identification (S13): We will use the concept of namespaces to 

clearly identify each element of a composed variability model. This will also 

facilitate the definition of constraints across variability model boundaries as 

we can address each modelling element explicitly. 

• Support for partial configuration (S14): We will include a mechanism to allow 

both, partial configuration as well as the redefinition of such configuration. 

The underlying concept will in particular support staged configuration. In this 

concept, (partial) configurations will be inherited from a basic model to 

provide a derived model, but remain reconfigurable to adapt the 

configuration to specific requirements.   

4.2 Quality of Service and Service Level Agreements 

The quality of service provisioning in service-based systems is typically regulated by 

Service Level Agreements (SLA). SLAs are formal specifications, which define the 

conditions under which a certain service is provided by a service provider to a service 

customer. The actual quality of service (QoS) may depend on various factors such as 

the current request rate, network usage or the overall utilization of the service 

hosting infrastructure. Maintaining a negotiated quality of service over time may 

lead to changes in service parameters, the service infrastructure configuration, the 

services themselves or the service composition. 

In this section we discuss concepts for extending the basic INDENICA variability 

modelling language from the point of view of service quality support. Below, we 

discuss the specific modelling concepts used in literature in a) SLA modelling 

languages and b) in product line variability modelling. Finally, we conclude on 

relevant concepts for modelling quality in service variability models. 

We compared the modelling concepts of nine specific SLA approaches, namely 

Language for defining Service Level Agreements (SLAng) [43], High-Level Objective-

based Policy for Enterprises (HOPE) [57], Web Service Offering Language (WSOL) [71], 

WebService Agreement (WS-Ag) [50], Composite SLA management (COSMA) [45], 

Web SLA (WSLA) [41], Web Service Modelling Language (WSML) [68], QoS Modeling 

Language (QML) [30], UML QoS profile (UM2QoS) [15] as well as the current UML 

modelling extension for modelling and analysis of real-time embedded systems 

(MARTE) [54]. With respect to the requirements given in Section 2.2, we identified 

the following relevant concepts: 

• Typed attributes are commonly used for expressing quality characterizations 

in terms of qualitative statements (e.g. based on enumerations) or 

quantitative (numeric) values. These attributes can be grouped using a 

structured data type such as a record as e.g. done in SLAng [43] or MARTE 

[54]. 

• Arithmetic expressions are used to express derived quality characteristics, 

such as quality functions in HOPE [57] or combined metrics in WSLA [41]. The 

Object Constraint Language (OCL) [52] is used in UM2QoS [15] and in MARTE 

[54]. 
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• Logic expressions are used to specify constraints and restrictions on quality 

attributes. Various types of logic are used in literature, such as first-order 

predicate logic on quality attributes and derived quality characteristics in 

COSMA [45], typed predicate logic in WSML [68] or UM2QoS [15] (using OCL 

[52]), or even temporal logic as suggested in WS-Ag [50]. 

Quality specifications have been combined with variability modelling, e.g. to analyze 

variability models and to determine the overall quality of a derived product. By 

analyzing related publications, we identified the following concepts as being relevant 

for the requirements derived in Section 2.2: 

• Quantitative and qualitative attributes are a general requirement for the 

integration of quality constraints into variability modelling [5]. Particularly, 

qualitative real values are used to characterize the footprint of the product in 

[66], reliability and energy consumption in [31] or cost and response time in 

[48]. Instead of attributes, model annotations are used in [31]. 

• A further requirement for quality specifications in variability modelling is the 

support of algorithms for calculating derived values [5]. One example of such 

general-purpose algorithms are the analysis functions in [31] while the 

authors in [48] rely on three specific aggregation operators, namely 

summation, multiplication and min-max calculation. 

• Accordingly, the constraints language can be enabled for quality attributes, 

such as the probabilistic logic language in [31]. 

As an additional topic it might be beneficial to consider integration with goal-

oriented modelling (as applied in the INDENICA requirements approach in WP1) in 

order to support traceability of requirements to the variability model. Such an 

integration is discussed in [22]. There the authors use positive and negative 

contributions to goals to derive quality properties of the variability model. 

Based on the approaches for QoS specifications in SLA modelling and in variability 

modelling we can sketch the realization of the following specific requirements listed 

in Section 2.2: 

• Specification of qualitative and quantitative QoS properties (S6): Qualitative 

and quantitative QoS properties will be expressed as non-Boolean attributes, 

i.e. qualitative properties as ordered enumerations and quantitative 

properties by numeric (real) values.   

• Constraints on QoS properties (S8): We expect that typed predicate logic 

using OCL (more detailed BasicOCL or EssentialOCL) will be adequate for QoS 

constraints in INDENICA fostering the use of well-known constructs and 

standards. In contrast, probabilistic logic or even temporal logic would 

seriously impact the analyzability of variability models. 

• Arithmetic expressions for derived quality properties (S7): Will be realized by 

defined operations in OCL (as selected for realization of S8). 
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4.3 Meta-Variability 

Meta-variability is the capability of systematically varying an aspect of variability that 

is taken as a fixed part in a variability description. Examples include: 

• Variability of variability description (e.g. modifying alternatives into options 

or adaptivity constraints) 

• Changing binding times 

• Changing variability implementation mechanisms 

In this section, we first illustrate meta-variability in the running example and then 

describe extensions and concepts for supporting meta-variability. This provides a 

basis for the design of the corresponding capabilities in the INDENICA variability 

modelling language. 

An important form of meta-variability is binding time variability. In the running 

example this leads to an augmentation of each variability by information about the 

latest point in time when the variability must be resolved. Let us assume that the 

domain engineer defines that compile time and runtime binding are both valid 

binding times for the Content-Type  variability. When compile time is selected 

during product configuration, the set of supported content types as well as the 

related realization can be included into the product by the compiler. In contrast, 

when selecting runtime, all possible implementations of content type functionalities 

must be included at compile time. Further, additional functionality is required to 

switch among the different Content-Type  implementations at runtime. 

A meta-variability can be understood as an additional variable attribute assigned to a 

"main" variability. This additional attribute can by itself be defined, applied and 

constrained. Thus, the basic concepts of the INDENICA variability modelling language 

should be designed in a way that a natural extension to meta-variability is possible.  

We will discuss the realization of the specific requirements defined in Section 2.2 

below: 

• Definition of meta-variabilities and their properties (S9): Before using a 

meta-variability in a concrete variability model, the meta-variability and its 

properties must be defined. This includes the concrete values a meta-variable 

can take as well as its cardinality specifying whether the meta-variability is an 

optionality, an alternative, a range, etc. As a meta-variability can be 

considered as a variability attribute, we just need to foresee structured type 

declarations indicating the new type as a meta-variability. As an example, the 

binding time range mentioned above can be defined as a meta-variability 

with values specified by an enumeration (compile time, deployment time, 

startup time, runtime) with cardinality 1..*, i.e. at least one binding time must 

be selected in a valid model. 

• Definition of the impact of meta-variabilities (S10): The application of a 

meta-variability happens like the binding of variabilities by selecting concrete 

values for the attributes of variabilities during the configuration process. This 
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must respect the specific type definitions and properties defined for 

individual meta-variabilities. 

• Definition of constraints (S11): The constraint language of the INDENICA 

variability model should be capable of defining constraints which refer to 

meta-variabilities so that bindings of variabilities and meta-variabilities can 

be constrained or automated. As an example, postponing the binding time of 

Content-Type  to runtime should enforce that also container and 

database can be bound at runtime.  

4.4 Service Technology-Specific Extensions 

In deliverable D2.2.1, we discussed different variability implementation techniques 

from literature. These techniques are relevant to service-oriented development and, 

in particular, to the INDENICA project. We introduced a categorization of the 

techniques based on the variability objects they address (also shown in Section 2.2). 

While Deliverable 2.2.1 focused on variability implementation, in this section, we will 

discuss what can be learned from these techniques with respect to variability 

modelling. The first part of this section discusses the approaches that include 

variability modelling explicitly. In the second part, we consider the approaches that 

do not model variability explicitly and discuss why additional capabilities are needed. 

The subset of approaches that use an explicit variability model use rather basic 

modelling capabilities (cf. Table 1). In these cases, the configuration space is typically 

described using typical configurable elements like features. All approaches use 

mandatory, optional and alternative forms of variations, while multiple selections 

and cardinalities are only used by few. Hierarchical structuring of configurable 

elements is inherent in the used modelling approaches (feature modelling or 

orthogonal variability modelling). The definition of constraints mostly relies on 

Boolean operators like requires and excludes. 

An exception is the approach deployment / undeployment script, which additionally 

uses annotations to define deployment information for each configurable element 

[47]. The authors do not give any detailed information on how the deployment 

information is actually modelled, but we assume that this requires additional 

modelling elements like attributes and non-Boolean variability, e.g., strings to specify 

deployment locations. This approach may also use non-Boolean operators to restrict 

the deployment information defined in additional modelling elements. Again, this is 

an assumption due to the lack of information on how deployment information is 

actually modelled in this approach. 

Table 1 summarizes the approaches to variability implementation with respect to the 

used variability modelling elements. 
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In deliverable D2.2.1 we identified approaches to variability implementation that do 

not explicitly model variability. An example is the component service replacement 

approach [44], which addresses variability in service composition and processes and 

relies on QoS calculation and the exchange of one or more services to meet QoS 

requirements at runtime. We discussed the modelling of QoS and SLA aspects in 

detail in Section 4.2. The scoping and fine-tuning approach provided by SAP27 also 

addresses variability in service composition and processes. The approach provides a 

basic Business Adaptation Catalogue (BAC) and additional, predefined Business 

Configurations (BC). Customers use the BAC to select the required base 

functionalities and may overwrite parameters of the BC sets based on their specific 

needs. We discussed the issues of pre-configuration and overriding existing 

parameters, or more generally, overriding existing configurations in Section 4.1. The 

context-aware deployment plan approach [3] facilitates service and platform 

deployment variability. This approach does not use any specific modelling elements 

                                                      
27

 http://help.sap.com/saphelp_byd30/en/KTP/Software-Components/01200615320100003379/SAP_BBD/ 

SAP_BBD.html 
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Configuration 

Space Definition 

Basic Elements x x x x x x x 

Additional Elements       x 

Forms of 

Variation 

Mandatory x x x x x x x 

Optional x x x x x x x 

Alternative x x x x x x x 

Multiple Selections x x  x x  x 

Cardinality x x  x   x 

Hierarchies x x x x x x x 

Constraints 
Boolean  x x x x x x x 

Non-Boolean        x 

****addresses variability in technical platform services 

****addresses variability in domain-specific services 

****addresses variability in service composition and processes 

****addresses variability in service and platform deployment 

Table 1: Summary of used modeling elements in variability implementation approaches 
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or approaches, but could be combined with one of the approaches introduced in 

Section 3.  

The remaining variability implementation techniques allow arbitrary extensions to 

the base functionality of the respective variability objects. Existing variability 

modelling approaches are not well capable of describing this. This might be the 

reason, why those variability implementation approaches that address this do not 

explicitly use a variability modelling approach. 

In summary, analyzing the capabilities of existing variability techniques for service 

implementation does not provide a good basis for solving the issues. Basic 

techniques are used, but more demanding aspects of variability modelling are 

typically not addressed, rather the implementations work without explicit models. In 

particular, the need to address arbitrary and unforeseeable extension to base 

functionalities is a major challenge, as we discussed above. We defined this as an 

essential requirement in the context of service and service platform ecosystems 

(S15) in Section 2.2. Addressing these challenging issues and integrating them with 

service platform technologies will be a major contribution of the INDENICA 

approach. 

4.5 Summary 

In the previous sections we discussed additional variability modelling concepts that 

arise from the specific requirements regarding variability modelling in service-based 

systems. The discussion of each concept included the introduction of modelling 

elements and dependency management capabilities. This provides a basis for our 

definition of the advanced variability modelling language in Section 5. 

The above discussion of additional modelling concepts together with our discussion 

of requirements in Section 2 showed that we will actually need to extend the 

expressiveness of our core modelling language. Thus, composition of multiple 

variability models, constraints among composed models and support for partial 

configuration is a must from the point of view of service ecosystems. Meta-

variabilities, the definition of their impact as well as the restriction of meta-

variabilities seem to be often relevant and are thus likely candidates for inclusion in 

the INDENICA variability modelling language. Service technology-specific extensions 

could not be identified, however, the need to address arbitrary and unforeseeable 

extensions to base functionality is a challenging issue. This will be a major 

contribution of the INDENICA approach. 

The specification of qualitative and quantitative QoS properties requires non-

Boolean attributes as well as corresponding dependency management capabilities 

including arithmetic expressions to define restrictions on QoS properties. This is 

subsumed by the core variability modelling concepts that we introduced in Section 3. 
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5 The INDENICA Variability Modelling Approach 

In this section, we will describe the concepts of the INDENICA Variability Modelling 

Language (IVML). In accordance to the previous sections, we will distinguish between 

a core modelling language and an advanced modelling language that extends the 

core language to satisfy the specific requirements that arise in the INDENICA project. 

This distinction facilitates ease of use for the most standard issues in variability 

modelling as it does not complicate the use of this language for users who do not 

need the more advanced features. The concepts of the core modelling language are 

based on the results of the discussion in Section 3. In this section, we discussed 

different levels of expressiveness for basic variability modelling in INDENICA. The 

core modelling language is extended by advanced modelling concepts that we 

identified as prerequisites to effective and efficient variability modelling in service-

based systems and, in particular, in service (platform) ecosystems in Section 4. 

The basic concepts of the IVML are related to approaches like the Text-based 

Variability Language (TVL) [12], the Class Feature Relationships (Clafer) [4], the 

Compositional Variability Management framework (CVM) [59], etc. However, we 

decided to develop a different approach, based on decision modelling concepts, in 

order to appropriately address the requirements identified in Section 2.4. 

We will introduce a textual specification to describe the IVML concepts. This will help 

to give a precise representation of the modelling concepts. The syntax, we use in this 

section was developed as a basis for representing the concepts. The details of the 

syntax may change considerably in the course of the project. Our presentation of the 

IVML-syntax draws upon typical concepts used in programming languages, in 

particular Java, and other modelling languages such as TVL [12], Clafer [4], the Object 

Constraint Language (OCL) [52], or the UML [53]. The dependency management 

concepts of the IVML mostly rely on the concepts of the OCL. We will adapt these 

concepts as needed to provide additional operations required by IVML-specific 

modelling elements, e.g. match and substitute operations for decision variables of 

type string. 

We will use the following styles and elements throughout this section to illustrate 

the concepts of the IVML: 

• The syntax as well as the examples will be illustrated in Courier New . 

• Keywords will be highlighted using bold font. 

• Elements and expressions  that will be substituted by concrete values, 

identifiers, etc. will be highlighted using italics font. 

• Identifiers will be used to define names for modelling elements that allow the 

clear identification of these elements. We will define identifiers following the 

conventions typically used in programming languages. Identifiers of new 

types will start with a capital letter to easily distinguish them from variables.  

• Expressions will be separated using semicolon “; ”. 
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• Different types of brackets will be used to indicate lists “() ”, sets “{} ”, etc. 

This is closely related to the Java programming language. 

• We will indicate comments using “// ” and “/* ... */ ” (cf. Java). 

We will use the following structure to describe the different concepts: 

• Syntax: this is the syntax of a concept. We will use this syntax to illustrate the 

valid definition of elements as well as their combination. 

• Description of syntax: provides the description of the syntax and the 

associated semantics. We will describe each element, the semantics and their 

interaction with other elements in the model. 

• Example: the concrete use of the abstract concepts is illustrated in a (simple) 

example. 

In Section 5.1, we will describe the INDENICA variability modelling core language. We 

will introduce the required elements and expressions to define a basic configuration 

space including Boolean and non-Boolean variabilities. We will further describe the 

dependency management capabilities of this language to restrict configuration 

spaces. Finally, we will describe the definition of (product) configurations based on 

configuration spaces. 

In Section 5.2 we will describe the advanced concepts of the INDENICA variability 

modelling language. We will introduce extensions that are required to satisfy the 

specific requirements in the INDENICA project like the support for service-

ecosystems, for service technology and meta-variability.   

Section 5.3 will provide a summary on how the requirements collected in Section 2 

are implemented by the IVML, i.e. to which degree individual requirements are 

realized by the language. 

5.1 INDENICA Variability Modelling Core Language 

This section describes the core language of the IVML. In this language, a project is 

the top-level element that identifies the configuration space of a certain (software) 

project. In terms of a product line, this may either be an infrastructure as a basis for 

deriving products or a final product. In a project the relevant modelling elements will 

be defined. We describe this in the first part of this section. In the second part, we 

introduce the type system supported by the IVML. These types can be used to 

declare different types of decision variables. The dependency management 

capabilities to restrict the configuration space of a project will be described next. 

Finally, we will introduce the configuration concept of the IVML, which enables the 

definition of specific (product) configurations based on the configuration space 

defined in a project. 

5.1.1 Projects 

In the IVML a project (project) is the top-level element in each model. This 

element is mandatory as it identifies the configuration space of a certain software 

project and, thus, scopes all variabilities of that software project. The definition of a 

project requires a name, which simultaneously defines a namespace for all elements 

of this project. 
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Syntax: 

project name { 

/* Definition of the configuration space and 
configurations. */ 

}  

Description of syntax: the definition of a new project consists of the following 

elements: 

• The keyword project defines that the identifier name is defined as a new 

project or, to be more precise, as a new configuration space. 

• name is an identifier that defines the name of the new project and, thus, 

the namespace of all elements within this project. 

• The elements surrounded by curly brackets define the configuration space 

of the new project. 

Example: 

project contentSharing  { 

/* This will define a new project for a content-sha ring 
project. This is related to our running example in 
Section 3. */ 

}  

5.1.2 Types 

In a project (cf. Section 5.1.1) different kinds of core modelling elements may be 

used to both represent the variabilities and define a configuration space 

appropriately. We will express these kinds as formal types in IVML, thus defining a 

(strongly) typed language. We distinguish between basic types, enumerations, 

container types, derived and restricted types and compound types. These types can 

be used to declare or define concrete decision variables. 

5.1.2.1 Basic Types 

In Section 3, we argued that non-Boolean variability is a must for the core 

expressiveness of the INDENICA language. Thus, the IVML supports as basic types 

Boolean (Boolean), integer (Integer), real (Real) and string (String) with their 

usual meaning. The names of the basic types are aligned to OCL [52]. These types 

support the definition of basic variabilities, e.g. the Boolean  type may be used for 

modelling optional variabilities. In addition, types like Integer  or Real  provide a 

basis for defining advanced variabilities, e.g. using an Integer  to define a 

quantitative property for Quality of Service (QoS) as described in Section 4. 
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5.1.2.2 Enumerations 

Enumerations allow the definition of sets of named values. This is used to describe a 

set of possible resolutions of a decision. 

Syntax: 

enum Name1 { value 1, ..., value n};  

enum Name2 { value 1=n1, ..., value n=nn}; 

Description of syntax: the definition of a new enumeration type consists of the 

following elements: 

• The keyword enum defines that the identifier Name is defined as a new 

enumeration. 

• Name is an identifier and defines the name of the new type. 

• The identifiers surrounded by curly brackets are the concrete elements of 

the enumeration. A specific element of an enumeration can be accessed 

using the “.”-notation, e.g. Name1. value 1. 

• Specifying concrete numeric values for elements of an enumeration 

(value i =n i ) turns the enumeration into an ordered enumeration. This 

enables relations like greater than (>) or less than (<) and operations like 

next (next) or previous (previous) on the values to be used. 

Example: 

enum Colors {green, yellow, black, white}; 

enum BindingTimes {configuration=0, compile=1, 

runtime=2}; 

5.1.2.3 Container Types 

The IVML provides two container types, sequences and sets. Sequences can contain 

an arbitrary number of elements of a given content type (including duplicates), while 

sets are similar to sequences, but do not support duplicate elements. These types 

can be used to describe a number of possible options out of which several can be 

selected at the same time. Elements in a container (both sequences and sets) can be 

accessed by their position in the container using an index ([ index ] ). 

The IVML supports a set of operations specific for container types, e.g. adding or 

appending elements to a container, deleting elements of a container, selecting 

specific elements, etc. We will introduce the full set of operations in Section 5.1.4. 

Syntax:  

// Declaration of a new sequence and a new set. 

sequenceOf(Type) Name1;  



INDENICA D2.1 

 

  46

setOf(Type) Name2; 

 

/* Access to elements of a variable of a container type: 
this holds for both sequences and sets. We will dis cuss 
variables in Section 5.1.3. */ 

Name1 variableName ; 

variableName [ index ] = value; 

Description of Syntax: the definition of a container type consists of the following 

elements: 

• The sequenceOf and setOf keywords indicate the definition of a new 

container of the respective type followed by the Type  of the elements 

contained in brackets. 

• The identifiers Name1 and Name2 are the names of the new containers. 

• Accessing a specific element of a container type (variable) requires the 

specification of an index ([ index ] ). An index is a positive integer value 

specifying the position of an element in a container. Accessing a specific 

position is only a valid operation, if this position has previously been set by 

different means like the add function (the set of operations is introduced 

in Section 5.1.4).  

Example:  

/* Definition of a new enumeration. "blob" means "b inary 
(large) objects". */ 

enum ContentType {text, video, audio, threeD, blob}; 

 

/* Denotes types of contents supported by a system */  

sequenceOf(ContentType ) Contents ; 

Contents basicContents = {text, audio} 

5.1.2.4 Type Derivation and Restriction 

The IVML allows the derivation of new types based on existing types. This supports 

extensibility and adaptability as users may define their own types based on basic 

types, enumerations or container types as well as on previously derived types. The 

derivation may also include restrictions to the existing type, e.g. to restrict the 

possible values of the new type to a subset of the values of the existing type. The 

restrictions are defined by one or more constraints (we will discuss constraints in 

detail below). Multiple constraints are implicitly combined by a Boolean OR. Thus, at 
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least one constraint has to be satisfied by the new type. The constraints will be 

defined in OCL style as described in Section 5.1.4. 

Syntax:  

typedef Name1 Type;  

typedef Name2 Type with ( constraint 1, ...,  

constraint n) ; 

Description of Syntax: the definition of a derived type consists of the following 

elements: 

• The typedef keyword indicates the derivation of a new type based on an 

existing type. 

• The identifiers Name1 and Name2 are the names of the new types. 

• The identifier Type  denotes the basic type from which the new type 

(Name1or Name2) will be derived. 

• The optional keyword with introduces a non-empty set of constraints, 

surrounded by brackets, out of which at least one must hold for Name2. In 

case of deriving Name2 from String the constraints may define regular 

expressions. 

Example: 

/* Definition of a type "AllowedBitrates" which is a set 
of Integers, i.e. a kind of alias for a complex typ e 
definition. */ 

typedef AllowedBitrates setOf(Integer); 

 

/* A new modelling type of the basic type integer t hat is 
restricted to assume values between "128" and "256" . */ 

typedef Bitrate Integer with (Bitrate >= 128 and 

Bitrate <= 256); 

5.1.2.5 Compounds 

A compound type groups multiple types into a single named unit (similar to structs 

or records in programming languages or groups in feature modelling). This allows 

combining semantically related decisions from which each element has to be 

configured individually. 

Syntax:  

compound Name { 

Type  name1; 
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... 

} 

Description of Syntax: the definition of a compound type consists of the following 

elements: 

• The compound keyword indicates the definition of a new compound type. 

• The identifier Name defines the name of the new compound type. 

• The set of elements surrounded by curly brackets defines the types of the 

compound type. Each declaration of a typed element is separated by a 

semicolon. 

Example: 

/* A new compound type for the configuration of dif ferent 
(web) content. The content may vary in terms of nam e and 
bitrate. "Content.bitrate" is the integer within th e 
compound content. */ 

compound Content { 

String name; 

Integer bitrate; 

}  

5.1.3 Decision Variables 

The types introduced in Section 5.1.2 can be used to declare (decision) variables 

representing a concrete variability. A decision variable is an element of a project 

(configuration space) that basically accepts any value of its type. Constraints may 

further restrict the possible values by removing certain combinations of values from 

the allowed configuration space. The value given to a decision variable defines the 

variant of the represented variability. 

In IVML a decision variable may either be declared with or without a default value 

(this is an optional parameter). Decision variables with a default value can be further 

configured by overwriting their (default) value at a later point in time. However, 

overwriting the default value is not necessary.  

Syntax: 

// Declaration of a decision variable.  

Type  name1; 

 

/* Declaration of a decision variable with a defaul t 
value. The "valueAssignment"-expression will be des cribed 
in detail below. */ 
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Type  name2 =  valueAssignment ; 

Description of Syntax: the basic declaration of a new decision variable (excluding the 

declaration of an optional default value) consists of the desired type (one of the 

basic types, an enumeration, a container type, a derived or a restricted type, or a 

compound type) followed by an identifier (name1) that states the name of the 

variable.  

Optionally, a default value can be assigned to a decision variable appending “=” 

followed by a “ valueAssignment”- expression after the name (name2) of the 

decision variable. The form of the “ valueAssignment”- expression depends on 

the specific type of the declared decision variable: 

• Basic types and Enumerations: an expression that yields a value of the 

corresponding type and can be actually calculated, i.e., it either consists of 

constants or the values of the variables are known. 

• Container types: either an expression of the type of the container, which 

can be statically evaluated, or a set of values separated by commas in curly 

brackets after the name of the decision variable. The allowed values within 

the curly brackets are determined based on the base type of the container. 

• Compounds: either an expression of the type of the compound, which can 

be statically evaluated, or a set of individual assignments, given in curly 

brackets. Each assignment explicitly gives the field in the compound that 

the assignment is made to, followed by a “=” and an expression of the 

corresponding element type. Again this expression needs to be statically 

evaluated. 

• Derived type: the assignment follows the rules of the base type. 

Example: 

/* Declaration of a new variable of type integer wi th a 
default value. */  

Integer bitrate =  128; 

 

/* Declaration of a new variable of type enumeratio n with 
a default value (cf. Section 5.1.2.2). */  

Colors backgroundColor =  black; 

 

/* Declaration of a new variable of type container 
(sequence) with default values (cf. Section 5.1.2.3 ). */  
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Contents baseContent = {text, audio}; 

 

/* Declaration of a new variable of type compound w ith 
default values (cf. Section 5.1.2.5). */  

Content complexContent = {name = "Text", 
bitrate = 128}; 

5.1.4 Constraints 

Constraints are used to define validity rules for a variability model, e.g. by specifying 

dependencies among decision variables. The syntax of constraints in the IVML 

basically follows the structure of expressions in propositional logic and, thus, is 

composed of: 

• Simple sentences, which represent constants, decision variables and types 

which can be named by (qualified) identifiers. 

• Compound sentences created by applying the operations to simple sentences 

and, in turn, to compound sentences. A correct compound sentence requires 

that the arguments passed to operations match the arity of the operation 

and the types of the parameters or operations comply, respectively.  

The operations available in IVML as well as the type compliance rules will be 

discussed in the remainder of this section. 

The constraints in IVML will mostly rely on the relevant part of the syntax as well as 

on a large subset of the operations defined in OCL. Table 2 summarizes the 

operations that are part of the IVML. In IVML we will use the constraint expression 

syntax of OCL, but omit the OCL contexts used to relate constraints to UML 

modelling elements. Two examples for such constraints are given below, one 

propositional and one first-order logic example using a quantifier: 

(10 < a and a < 20) implies b = a 

If a is in the range (10; 20) this implies that b has the same value as a. 

mySet->forAll(x|x > 100)  

All elements in mySet  must be larger than 100 

Regarding collections, we will take over the OCL collections Set  and Sequence , 

and exclude OrderedSet  and Bag in the initial versions of IVML. The class of 

collection operations used to construct iterator expressions (select , reject , 

collect ) and, in particular, quantors known from propositional logic (exists , 

forAll , isUnique , etc.) impose specific challenges to the analysability of 

variability models, but are required for variability modelling in complex realistic 

settings. 

In addition to the OCL operations listed in the bottom part of Table 2, the IVML 

extends this by the following operations: regular expressions on strings and 

operations for sets and lists. As syntactic sugar we will we provide index-based 

access to a List  using the usual array notation. Further, we will introduce a generic 
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functionality for defining aggregation operations on entire lists: In addition to the 

OCL operation collect, which applies a function to all elements in a set, we will 

introduce the apply  operation, which aggregates the result over a set using a 

binary, commutative function and a neutral element. 

We will also adhere to the (usual) operator precedence rules defined in the OCL 

specification in Section 7.4.7 and 9.3.2, such as multiplication and division having 

precedence over addition and subtraction. 

Type conformance will be defined by the following set of rules inspired by OCL (cf. 

OCL section 7.4.5): 

• The basic types do not comply with each other, i.e. they cannot be compared, 

except for Integer and Real. 

• Enums, sets and lists are not compliant among each other. 

• The application of the refines keyword induces a hierarchy of compounds 

where the subtypes are compliant to their parent types, i.e. the parent type 

may be replaced by each subtype. 

• Derived types are compliant to their base type as long as no constraints are 

specified. 

The notation as well as the semantics of constraints in the IVML will be closely 

aligned to the OCL. As we will not take over all elements of the OCL, particularly not 

those specifying the application of constraints in the context of UML models, we will 

reuse selected parts of the OCL syntax and semantics where applicable. The top part 

of Table 2 summarizes relevant parts of the OCL serving as a basis for the syntax and 

semantics of constraints in the INDENICA modelling language. 



INDENICA D2.1 

 

  52

5.1.5 Configurations 

The IVML does not differentiate between a configuration space and specific 

(product) configurations. Instead, a project can simultaneously describe or extend a 

configuration space and define a configuration. However, typically a project will 

provide a configuration space, while a different project may extend it, while 

providing configurations information for the initially specified configuration space. 

The set of decision variables and constraints of a project represent the set of all 

                                                      
28

 Unary negation operator. 

Topic Contribution to IVML OCL Section 

Basic types Boolean, Integer, Real, String 7.4 

enums Definition of enums, element access will be 

denoted by ‘.’ instead of ‘#’ 

7.4.2 

let-expressions as defined in OCL 7.4.3 

additional operations definition of named arithmetic expressions 

using the def keyword 

7.4.4 

Attribute access as defined in OCL 7.5.1 

Pathnames as defined in OCL 7.5.7 

Tuples similar to compounds in IVML, also defining 

the configuration of a compound 

7.5.15 

Set operations as defined in OCL 7.6.1-7.6.5 

Concrete syntax  selected parts, where applicable 9 

Constraint semantics  selected parts, where applicable 10 

Formal semantics selected parts, where applicable Annex A 

Operations 

All types =, <>, != addition: == as an alias for = 11.5.2 

Boolean not, or, xor, and, implies 11.5.4 

Real -28, abs, floor, round, +,-,*, /, min, max, <, 

<=, >, >= 

11.5.1 

Integer -9, +,-,*, /, abs, div, mod, min, max, <, <=, >, 

>= 

11.5.2 

String size, toInteger, toReal, concat, substring; 

addition for regular expressions: matches, 

substitutes 

11.5.3 

Set, Sequence size, includes, excludes, count, isEmpty, 

sum, product + min, max, avg, exists, forAll, 

isUnique, any, one, collect, select, reject, 

asSet, asSequence, addition: apply 

11.6.1, 

11.7.1, 11.9.1 

Set union, =, intersection, including, excluding 11.6.2, 

11.7.2, 11.9.2 

Sequence union, append, prepend, insertAt, 

subSequence, at, indexOf, first, last, 

addition: [] 

11.6.5, 

11.7.5, 11.9.4 

Table 2: OCL parts taken over into IVML, changes and additions are given in italics. 
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possible configurations. In addition, default values of decision variables as described 

in Section 5.1.3 define basic configurations and, thus, do not need to be further 

configured, but can be overwritten later as well. In addition, some values of decision 

variables can be derived using constraints. Any configuration, independent of where 

the values come from, must comply with the relevant constraints.  

Configurations in the IVML do not require any specific or additional keyword. They 

are simply given by variable assignments. We illustrate this concept by a simple 

example. 

Example: 

/* A project that represents both a configuration s pace 
and a configuration. The constraint implies a valid  
configuration with a bitrate value between "128" an d "256" 
and "content = text" (if no further configuration i s 
done). */ 

project contentSharing  { 

enum ContentType {text, video, audio, threeD, blob}; 

typedef Bitrate Integer with (Bitrate >= 128 and 

Bitrate <= 256); 

ContentType content ; 

Bitrate contentBitrate = 128; 

contentBitrate = 128 implies  

content = text; 

}  

5.2 Advanced Concepts of the INDENICA Variability Modelling 

Language 

This section describes advanced concepts of the IVML. We will describe how to 

assign additional attributes to modelling elements. This allows describing certain 

modelling elements in more detail, e.g. assigning meta-variability information as 

described in Section 4. We then augment the compound types introduced in Section 

5.1.2.5 by extension and referencing concepts. Extension concepts will also be 

introduced for projects (cf. Section 5.1.1), which cover modularization aspects as 

well as facilitating project composition. We will describe advanced configuration 

concepts including partial configurations as well as “freezing” configurations. Finally, 

we will describe a lightweight concept for including DSLs as part of a variability 

model. 

5.2.1 Attributes 

In the IVML modelling elements can be attributed by further (orthogonal) 

configuration capabilities, e.g. to express meta-variability such as binding times. An 



INDENICA D2.1 

 

  54

attribute in IVML is basically a decision variable that is attached to another modelling 

element describing this element in more detail. Thus, an attribute may also have a 

default value and may be restricted by constraints (cf. Section 5.1.4). The impact of 

an attribute depends on the element it is attached to. In the IVML the following 

modelling elements can be attributed: 

• Decision variable: attributes that are attached to a decision variable only 

describe this variable further. Depending on the type of the decision variable, 

the attributes of the variable also describe its elements, e.g. the various fileds 

of a compound variable. These fields may have additional attributes. 

Changing the value of a decision variable attribute will not cause any 

modification to elements outside the scope of the specific variable (as far as 

they are not connected by constraints). 

• Project: attributes that are attached to a project will affect all variables of this 

project. 

As the different elements may be nested, different values can be given for the same 

attribute on the outer and the inner scope. 

Syntax:  

attribute Type  name1 to name2; 

attribute Type  name3 = value  to name4; 

Description of Syntax: the definition of an attribute consists of the following 

elements: 

• The attribute keyword indicates the definition of a new attribute. 

• The expressions Type  name1 and Type  name3 correspond to the 

definition of a decision variable described in Section 5.1.3 while name1 and 

name3 are the identifiers of the new attributes. 

• The to keyword indicates the attachment of the new attribute on the left 

side to the element (name4) denoted on the right side. 

• name4 may be one of the elements described above to which the attribute 

is attached. 

• Optionally, a default value (value ) can be assigned to the attribute by 

appending a value expression after name3. 

Example: 

project contentSharing  { 

enum BindingTimes {configuration=0, compile=1, 

 runtime=2}; 

// Attaching an attribute to the entire project. 
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attribute BindingTime binding = compile 
to contentSharing; 

}  

5.2.2 Advanced Compound Modelling 

In Section 5.1.2.5 we introduced the compound types to group multiple types into a 

single named unit. In this section, we will extend the modelling of compound types 

by refinement and referencing concepts. Refinement allows extending existing 

compound types by additional elements, yielding a new (extended) compound type. 

Referencing enables the definition of references to other elements like other 

compounds. 

5.2.2.1 Extending Compounds 

In the IVML a compound may extend the definition of a previously defined (parent) 

compound. This is indicated by the refines keyword. Extending compound types is 

similar to subclassing in object-oriented languages, i.e. parentType  becomes a 

subtype of compoundType  and compoundType  may define further decision 

variables. 

Syntax:  

compound Name1 refines Name2 { 

// Define additional elements. 

} 

Description of Syntax: the definition of an extended compound type consists of the 

following elements: 

• The compound keyword indicates the definition of a new compound type. 

• The identifier Name1 defines the name of the new compound type. 

• The refines keyword indicates that the new compound type (Name1) is 

an extension of a previously defined compound type (Name2). 

• The set of elements surrounded by curly brackets defines the additional 

elements that make up the extensions to the inherited elements of 

compound Name2. 

Example: 

/* A compound type for the configuration of differe nt 
(web) content. */ 

compound Content { 

String name; 

Integer bitrate; 
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} 

 

/* A new compound type that refines the previous co mpound 
type. "ExternalContent" will subsume all elements o f 
"Content" and all additional elements defined below . */ 

compound ExternalContent refines Content{ 

String contentPath; 

String accessPassword; 

}  

5.2.2.2 Referencing Elements 

The IVML supports referencing of (other) elements, for example, other compounds 

within a compound type.  A reference allows the definition of individual 

configurations of an (external) element for the referencing element without 

including the external element as part of the referencing element explicitly. This is 

indicated by the refto keyword used for the definition of a reference and the 

refby keyword that indicates the configuration of a referenced element. 

Syntax:  

project name1 { 

compound Name2 { 

Type  name3; 

... 

} 

 

// Declaration of a new reference. 

refto(Name2) Name4; 

 

// Configuration of a referenced element. 

refby(Name4). name3 = value ; 

} 

Description of Syntax: the definition and the configuration of a reference consist of 

the following elements:  

• The refto keyword indicates the definition of a new reference. 

• Name2 defines the referenced element (type). 
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• Name4 is an identifier and defines the name of the new reference. In the 

IVML a reference is type, thus, the identifier for a new reference starts 

with a capital letter. 

• The refby keyword indicates the configuration of a reference (the 

configuration of the referenced element respectively). 

• Name4 is an identifier that defines the reference to be configured. 

• The syntax for configuring a reference depends on the type of the 

referenced element (see Section 5.1.3 for the syntax for assigning values 

to variables of a specific type). In the case above, we use “. ”-notation to 

configure a single element of a referenced compound type. 

Example: 

/* A compound type for the configuration of differe nt web 
containers being responsible for serving web conten t. */ 

compound Container { 

String name; 

... 

} 

 

/* Another compound type for the configuration of 
different (web) content referencing the "Container"  type 
to configure its individual web container. */ 

compound Content { 

String name; 

Integer bitrate; 

 

// Declaration of a reference to the Container comp ound. 

refto(Container ) myContainer; 

 

// Configuration of the above reference. 

refby(myContainer ).name = “ContentContainer”; 

} 
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5.2.3 Advanced Project Modelling 

In Section 5.1.1, we introduced the concept of projects (project) as the top-level 

element in each IVML-model. In this section, we extend the modelling capabilities of 

the IVML regarding projects in three ways: first, we describe versioning of projects 

that enables the definition of the current state of evolution of a project. This 

concepts correlates with the second concept: project composition. This introduces 

the capability of deriving new projects based on definitions in other projects and 

explicitly excluding certain projects from the composition. As part of this version 

information can be used. The third concept is project interface. The concepts of 

project composition and project interfaces support effective modularization and 

reuse of projects and, thus, configuration spaces. 

5.2.3.1 Project Versioning 

In IVML, projects can be versioned to define the current state of evolution of a 

project (and the represented product line infrastructure). Evolution of software may 

yield updates to projects. This can be described by a version. For defining a version, 

the version keyword is followed by a version number. This must be the very first 

element of the respective project. The version number consists of integer values 

separated by “. ” assuming that the first value defines the major version, while 

following numbers indicate minor versions. The level of detail of version numbers is 

determined by the domain engineer. 

Syntax: 

project name { 

// Definition of a version for this project 

version Number. Number; 

... 

}  

Description of Syntax: the attachment of a version to a project consists of the 

following elements: 

• The version keyword indicates the definition of a new version for the 

project name. 

• Number. Number defines the actual version of the project (here only two 

parts). 

Example: 

project contentSharing  { 

version 1.0; 

... 

} 
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5.2.3.2 Project Composition 

The IVML supports the composition of different projects. This is closely related to 

multi software product lines [61] and product populations [72]. Project composition 

allows to effectively reusing existing projects by using these projects within other 

projects. This also supports the decomposition of large variability models as 

semantically related parts can be defined in individual projects. The complete project 

then uses these (sub-) projects to define the combined project. In the IVML the 

following keywords are introduced for project composition: 

• import: this keyword indicates the use of a project. This keyword allows 

using certain elements of a project by reference. If a project contains explicit 

interfaces (see below), the specific interface, which is used, must be given.  

• conflicts: this keyword indicates incompatibility among projects. All 

projects (names) followed by this keyword cannot be used in combination 

with the project that defines this conflict expression. This is also checked for 

indirectly used projects.  

The keywords import and conflicts, introduced above, can be combined with 

version expressions using the with keyword and the version-information of a 

project introduced in Section 5.2.3.1. 

Syntax: 

project name1 { 

/* This introduces the project name2. Optionally, a 
version may restrict name2 to a specific version as it 
is shown below. */ 

import name2; 

// Accessing elements of a project. 

name2:: element ; 

 

/* This introduces incompatibility of project name1 with 
project name 3 of version greater than Number.Number . */ 

conflicts name3 with ( name3. version  > Number.Number ); 

}  

Description of syntax: the definition of a new project composition consists of the 

following elements: 

• The keyword import indicates that the entities, which are made available 

by the project or interface name2 will be available within the current 

project. 
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• For disambiguation the elements of name2 can be accessed using the “:: ”-

notation to express qualified names. If there is no ambiguity, they can be 

used directly. 

• The keyword conflicts indicates incompatibility of project name1 with 

project name3.  

• Optionally, version-expressions can be combined with the keywords 

import and conflicts using the with keyword. This defines specific 

versions of other projects to be imported into the current project or 

conflicting with the current project.  

• A version expression includes the version-information of a project (cf. 

Section 5.2.3.1), a relation operator and a version number or a version-

information of another project. In addition, logical operators can be used 

to concatenate simple version-expressions to define ranges of versions. 

Example: 

project application  { 

/* This will define a new project for content-shari ng 
applications. */ 

String name; 

} 

 

project targetPlatform  { 

// This will define a new project for target platfo rms. 

version 1.5; 

String name; 

} 

 

project contentSharing  { 

/* This will define a new project for a content-sha ring 
project importing two sub-projects "application" an d 
"targetPlatform". The latter sub-project must be of  
version "1.3" or higher. */ 

import application; 

import targetPlatform 
with targetPlatform.version >= 1.3; 
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// Accessing the elements of the sub-projects. 

application::name = "myApp"; 

targetPlatform::name = "myPlatform"; 

}  

5.2.3.3 Project Interfaces 

By default, all elements defined in a project are visible when they are imported into 

another project. In order to support effective modularization and reuse of variability 

models, we introduce interfaces to projects. Interfaces reduce the complexity in 

large-scale projects and provide means to automate the configuration of lower-level 

decisions based on high-level decisions.  

Interfaces in a project define all elements of a project, not part of the interface, as 

private and, thus, make them invisible to the outside. This is indicated by the 

interface keyword within a project. In order to access any elements they need to 

be declared as parameters of the interface. This can be done by exporting existing 

variables (using the export keyword) or by declaring new parameter variables. As a 

special characteristic of the IVML, it is also possible to define multiple interfaces for 

the same project. This is different from other variability modelling languages like the 

CVL [55].  

Importing a project (cf. Section 5.2.3.2) that includes interfaces allows the importing 

project to access only the parameters defined in the interface. All other elements of 

the project are not visible to the importing project. 

Syntax: 

project name1 { 

/* Declaration of a (private) decision variable. Th is 
variable is exported by the interface Name2. */ 

Type  name3; 

 

// Definition of a new interface. 

interface Name2 { 

/* Denotes the export of an existing decision varia ble 
of the project name1. */ 

export name3; 

... 

} 
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} 

Description of syntax: the definition of a new project interface consists of the 

following elements: 

• The keyword interface indicates the definition of a new interface of the 

project name1.  

• The keyword export indicates the export of the following decision 

variable name3. 

Example: 

project application  { 

// Declaration of (private) decision variables. 

String name; 

String appType ; 

Integer bitrate; 

 

// Definition of a constraint. 

appType = "Video" implies bitrate = 256; 

 

// This will define an interface for this project. 

interface MyInterface { 

export name, appType;  

} 

}  

 

project contentSharing  { 

/* This will import the interface "MyInterface" of 
project "application". */ 

import application::MyInterface; 

 

/* Only the parameters of the interfaces are access ible. 
"application::bitrate" yields an error. As long as the 
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variable names are unambiguous, the fully qualified  must 
not be used. */ 

name = "myApp"; 

appType = "Video"; 

}  

5.2.4 Advanced Configuration 

In Section 5.1.5, we introduced the configuration concept of the IVML. In this 

section, we will extend this concept to partial configuration. Partial configuration 

allows the configuration of a project in terms of multiple configuration steps, each 

configuring only parts of the project. The set of all configuration steps typically yield 

a full configuration of the entire project. We will further introduce the concept of 

persistent (parts of) configurations. We call this “freezing”. Freezing (parts of) 

configurations defines these parts to be persistent. Persistent parts cannot be 

changed anymore in further configuration steps. Finally, we will describe how (parts 

of) configurations can be evaluated independently from other parts of the 

configuration. This allows deriving additional configuration values based on existing 

configurations using the constraints and value propagation. 

5.2.4.1 Partial Configurations 

The IVML supports partial configurations. Partial configuration allows the 

configuration of a project in terms of multiple configuration steps, each configuring 

only parts of the project. The set of all configuration steps typically yields a full 

configuration of the entire project. The configuration of a part of a project may also 

be reconfigured by the next configuration step (cf. the concept of default values, 

which we introduced in Section 5.1.3). For example, a service provider may define a 

(pre-) configuration of the provided service, while a service consumer may 

reconfigure his service to satisfy his specific needs.  

Partial configuration in the IVML is a straight-forward consequence of the concepts 

introduced so far. We illustrate this concept by a simple example. 

Example: 

project application  { 

/* This defines a new project for content-sharing 
applications including the (pre-) configuration of the 
configuration element. This is also the first 
configuration step.*/ 

String name = "Application"; 

}  

 

project targetPlatform  { 



INDENICA D2.1 

 

  64

/* This defines a new project for target platforms 
without any configuration. */ 

String name; 

}  

 

project contentSharing  { 

/* This defines a new project for a content-sharing  
project and imports two sub-projects "application" and 
"targetPlatform". */ 

import application; 

import targetPlatform; 

 

/* This is the second configuration step, including  the 
re-configuration of the name-element of the sub-pro ject 
"application" and a configuration of the name-eleme nt of 
the sub-project "targetPlatform". */ 

application::name = "myApp"; 

targetPlatform::name = "myPlatform"; 

}  

5.2.4.2 Freezing Configurations 

In the previous section we described the concept of partial configuration. This 

included the possibility to re-configure existing (pre-) configurations. Although re-

configuration is reasonable in some cases, e.g. to modify a given configuration to 

satisfy an individual need, at the end we desire a persistent configuration to define a 

specific product. For example, service consumers should not be able to reconfigure 

some parts of a configuration defined by a service provider. 

We introduce the concept of “freezing” configurations. This is indicated by the 

keyword freeze. Freezing configurations define the current (partial) configuration 

to be persistent. Persistent configurations cannot be changed anymore in the course 

of the configuration. Excluding elements of a configuration from being frozen, e.g. 

freezing only some elements of imported projects or a compound type, the but 

keyword can be attached after a freeze-expression. All elements followed by a but-

expression will not be frozen. 

Syntax: 

project name1 { 

// Definition of new compound type 
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compound Name2 { 

Type  name3; 

Type  name4; 

} 

 

/* Declaration of a new decision variable of the ab ove 
type */ 

Name2 name 6; 

 

/* Freezing the configuration of the decision varia ble 
except element name4. */ 

name6.name 3 = value 1; 

freeze { 

name6; 

} but ( name6.name 4) 

} 

Description of syntax: the definition of persistent (parts of) configurations consists 

of the following elements: 

• The keyword freeze indicates that all elements with their current values 

within the following curly brackets are persistent.  

• Optionally, the keyword but indicates a set of elements that is excluded 

from being persistent. All elements of this set can be further configured. 

The but-expression may also include wildcards (*) which are necessary 

especially in large models. Attaching a wildcard to an element, e.g. 

name6. * , yields all elements of name6 to be excluded from being frozen.  

Example: 

project application  { 

/* Definition of a new compound type for the 
configuration of the content type of an application . */ 

compound ContentType { 

String contentName; 

Integer bitrate; 
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} 

// Declaration of a decision variable of the above type. 

ContentType appContent; 

/* Definition of the content name to be persistent.  The 
required bitrate for this content may be configured  as 
part of the configuration of the container type for  this 
content. */ 

appContent.contentName = "Text"; 

freeze { 

appContent; 

} but (appContent.bitrate) 

}  

5.2.4.3 Partial Evaluation 

The IVML provides a concept for the evaluation of configurations. This is indicated by 

the keyword eval. At the end of a project definition an implicit eval occurs. The 

explicit invocation of eval can be used to structure the definition of the variables 

and thus reduces the search-space during constraint-evaluation. eval-blocks are 

evaluated inside-out before the project itself is evaluated. eval-blocks on the same 

nesting level do not imply any evaluation sequence. 

Syntax: 

/* Evaluate a constraint that defines the relation between 
two variables of the same type. This leads to the 
assignment of the variable values to the unassigned  
variable upon exit of the scope of the eval-stateme nt. */ 

eval {  

name1 = name2;  

} 

Description of syntax: the evaluation of a configuration requires an eval-statement 

using the keyword eval followed by curly brackets. 

Example: 

project application  { 

/* Definition of a new compound type for the 
configuration of the content type of an application . */ 

compound ContentType { 
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String contentName; 

Integer bitrate; 

} 

// Declaration of a decision variable of the above type. 

ContentType appContent; 

/* Definition of the content name and bitrate. This  
configuration is evaluated explicitly to minimize t he 
search space. */ 

eval { 

appContent.contentName = "Text" implies 

appContent.bitrate = 128; 
} 

} 

 

project targetPlatform  { 

/* Define a new project for target platforms withou t any 
configuration.*/ 

String name; 

Integer bitrate ; 

}  

 

project contentSharing  { 

/* Define a new project for a content-sharing proje ct 
importing two sub-projects "application" and 
"targetPlatform".*/ 

import application; 

import targetPlatform;  

/* This constraint restricts the bitrate of the tar get 
platform to be equal or greater than the bitrate of  the 
application content. The bitrate of the target plat form 
can be derived from the bitrate of the application 
content: "targetPlatform::bitrate = 128". At the en d of 
a project definition an implicit evaluation for the  
whole project is done. */ 
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targetPlatform::bitrate  
>= application::appContent.bitrate;  

}  

5.2.5 Including DSLs 

The IVML includes a lightweight concept for including domain-specific languages 

(DSLs) as part of the variability model. This supports situations, in which the 

variability may be expressed more intuitively or more naturally using DSLs. 

DSLs can be embedded in IVML in terms of external language sections similar to 

inline assembler code in higher languages. The embedded DSL code is preprocessed 

in order to consider actual decision values during DSL evaluation, passed to a DSL-

specific tool for evaluation and the result of the evaluation is considered as part of 

the actual IVML model, which triggered the evaluation. The evaluation result is 

interpreted as a part of the final IVML description.  

Syntax: 

DSL( stopString , prefix , dslInterpreter ) 

// here goes the DSL 

DSL( stopString )  

Description of syntax: an external language section for a DSL is introduced by the 

keyword DSL. The parameters of the opening DSL keyword are: 

• The stopString  identifier is a string used for uniquely identifying the end 

of the DSL in combination with the DSL keyword. The part between the 

opening DSL keyword (excluding its parameters in parentheses) and the 

closing DSL keyword (marked by the stopString ) is not analyzed by the 

IVML tools but passed to an external DSL interpreter for evaluation. 

• The prefix  identifier is a string identifying a DSL-specific prefix for IVML 

identifiers denoting decision variables. When passing the DSL code to the 

DSL specific tools, all occurrences of decision variables marked by the 

prefix  are replaced by actual values for the individual decisions.  

• The dslInterpreter  identifier is a string containing, for example, a file 

name or an URI specifying the concrete DSL tool which is responsible for 

evaluating the instantiated DSL code, i.e. after substituting occurrences of 

decision variables.  

Example: 

project application  { 

/* Declaration of a decision variable with a defaul t 
value. */ 
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Integer bitrate = 128; 

 

/* Declaration of an embedded DSL section within an  IVML 
project. */ 

DSL("dsl.com","$","http://www.dsl.com/dslInterpreter")  

/* The actual DSL statements will be placed between  
the DSL keywords. */ 

... 

/* Applying IVML decision variables to DSL statemen ts 
by using the DSL-specific prefix "$" defined above.  */ 

... $bitrate ... 

DSL("dsl.com") 

} 

5.3 Fulfillment of Requirements 

In this section we will provide a summary on how the requirements collected in 

Section 2 are implemented by the IVML, i.e. to which degree individual requirements 

are realized by the language. 

General Variability Modelling Requirements 

• G1: Definition of a configuration space that represents all variabilities as a 

composition of basic modelling elements. The IVML realizes G1 by decision 

variables (Section 5.1.3) of the basic types (Section 5.1.2.1), defined as part of 

projects (Section 5.1.1). 

• G2: Definition of additional modelling elements (attributes) that may refine the 

basic modelling elements and allow representing additional aspects of variability. 

The IVML realizes this requirement by attributing modelling elements by further 

(orthogonal) configuration capabilities (Section 5.2.1). 

• G3: Definition of different types of value ranges, including non-Boolean 

variability. The IVML realizes this requirement by enumerations (Section 5.1.2.2) 

and container types (Section 5.1.2.3) of the basic types (Section 5.1.2.1), derived 

types (Section 5.1.2.4) and compounds (Section 5.1.2.5). 

• G4: Definition of product configurations, that allow describing individual 

configurations based on the definition of the configuration space. In the IVML 

this requirement is realized by assigning values to decision variables (Section 

5.1.3), either using default values or constraints (shown in various examples in 

the sections above). 

• G5: Definition of constraints to restrict the combination of elements defined in 

the (unconstrained) configuration space. Requirement G5 is realized by a 

constraint language based on OCL (Section 5.1.4), in particular by logical, 

relational and arithmetic expressions. 
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• G6: Definition of complex dependencies among the individual variability 

elements (and their attributes). Requirement G6 is realized by a constraint 

language based on OCL (Section 5.1.4). 

Requirements for Variability Modelling in Service-Based Systems 

• S1: Definition of the variability relevant to service platform infrastructure, 

technical platform services, domain-specific services, service composition and 

processes and service and platform deployment. This requirement is an 

extension of the general requirement G1. In Section 4.4, we discussed variability 

relevant to these variability objects. The result of this discussion was that the 

need to address arbitrary and unforeseeable extension to base functionality is a 

major challenge. This is subsumed by requirement S15. Requirement S15 is 

realized by inclusion and composition of projects (Section 5.2.3.2) and 

refinement of compounds (Section 5.2.2.1). Evolution of configuration spaces is 

further supported by versions and the modelling of explicit conflicts (Section 

5.2.3.1). 

• S2: Definition of (at least) the following forms of variation: optional, alternative 

and multiple selection. In the IVML, primary means to realize S2 are Boolean 

decision variables (Sections 5.1.2.1 and 5.1.3), enumerations (Section 5.1.2.2)and 

container (Section 5.1.2.3). 

Large Scale Variability 

• S3: Grouping of related variability elements, e.g. to define a set of alternative 

services from which the selected variant must be configured individually. This 

requirement is an extension of the general requirement G1 and helps to organize 

large scale variability. Requirement S3 is realized in the IVML by compound types 

(Section 5.1.2.5). 

• S4: Definition of "arrays" to represent sets of cases that need to be configured 

while the relevant configuration possibilities have the same structure. Arrays 

correspond in the IVML to sequences (Section 5.1.2.3). 

• S5: Definition of strong dependencies in the sense that general (abstract) 

decisions lead to the configuration of (multiple) lower-level decisions. This 

requirement is realized in the IVML by defining constraints (Section 5.1.4) that 

restrict a (set of) decision variable based on the values of other decision 

variables. 

Quality of Service 

• S6: Specification of qualitative and quantitative properties describing QoS for 

individual configurable elements. In the IVML, QoS properties can be modelled as 

decision variables (Section 5.1.3) or as part of compounds (Section 5.1.2.5). 

Qualitative properties can be modelled as (ordered) enumerations (Section 

5.1.2.2) and quantitative properties as decision variables of type Real (Section 

5.1.2.1). 

• S7: Specification of arithmetic expressions to specify derived quality properties 

(an example could be the overall quality of a service to be computed from 

responsiveness and availability). In the IVML, arithmetic expressions are 
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supported by the constraint language (Section 5.1.4) which also supports the 

definition of named arithmetic expressions in the sense of function macros. 

• S8: Definition of Constraints on QoS properties to express valid ranges and 

dependencies among QoS. Constraints may be used (in combination with 

arithmetic expressions) to map between qualitative and quantitative properties. 

This requirement extends the general requirements G5 and G6. The constraint 

language in the IVML supports the specification of valid ranges and dependencies 

(Section 5.1.4) on decision variables which can be used to model QoS properties 

(see fulfilment of requirement S6). 

Meta-Variability 

• S9: Definition of meta-variabilities and their individual properties. This 

requirement is an extension of the general requirements G1 and G2. 

Requirement S9 is realized by attributing already defined modelling elements 

(Section 5.2.1). 

• S10: Definition of the impact meta-variabilities have on the implementation 

process. This requirement is an extension of the general requirement G4. This 

requirement is realized by value assignments to attributes, either as default 

values (Section 5.2.1) or by using value assignments of the constraint language 

(Section 5.1.4). 

• S11: Definition of constraints on meta-variabilities, e.g. to express that 

configuring the binding time of one configuration space element restricts the 

binding time of a dependent configuration space element. This requirement is an 

extension of the general requirements G5 and G6. Requirement S11 is realized in 

the IVML by supporting constraints (Section 5.1.4) on attributes (Section 5.2.1). 

Eco-Systems 

• S12: Composition of multiple variability models as well as their individual 

configuration and the configuration across variability model boundaries. This 

requirement is realized in the IVML by importing (multiple) source projects into 

one target project (Section 5.2.3.2), thus making the type definitions, the 

defaults, constraints and assigned decision values part of the target project. 

• S13: Definition of constraints among modelling elements of different variability 

models including a clear identification of each element with respect to its source. 

In the IVML, each modelling element can be accessed in terms of its qualified 

name (Section 5.2.3.2), in particular as parts of constraints (Section 5.1.4). 

• S14 Partial configuration of variability models to enable pre-configuration and 

reuse of existing variability models in new contexts. This requirement is realized 

in the IVML by default values (Section 5.1.3) and value assignments as part of 

constraints (Section 5.1.4). Further, the IVML supports freezing configured 

decision variables (Section 5.2.4.2) as well as partial evaluation (Section 5.2.4.3) 

in order to ease handling partial configurations. 

• S15: Extension of the configuration space by variabilities that have not been 

taken into account previously (open variation). This can be seen as a special case 

of S12, however, it goes beyond it by demanding that existing variations can also 

be extended at a later point. Requirement S15 is realized by inclusion and 

composition of projects (Section 5.2.3.2) and refinement of compounds (Section 
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5.2.2.1). Evolution of configuration spaces is further supported by versions and 

explicit conflicts (Section 5.2.3.1). 

• S16: Separation between local and global variability implementation reusing 

variability models (modularity). In particular, this leads to the requirement of 

variability interfaces. This requirement is realized by (multiple) interfaces for 

IVML projects (Section 5.2.3.3). 

Requirements from Industry 

• I1: Definition of non-Boolean variability. This is subsumed by requirement G3. 

This requirement is realized by the various types for decision variables 

introduced in Section 5.1.2. 

• I2: Definition of cardinality (i.e., making – restricted – choices in groups of 

elements and replicate complete groups in order to provide individual 

configuration possibilities for the various copies. This can be seen as an extension 

to the requirement S3. Requirement I2 is realized in the IVML by constraint 

operations on collections, particularly those representing first-order logic 

quantors (Section 5.1.4). 

• I3: Referencing of other (configuration) elements. Requirement I3 is realized by 

qualified names of configuration elements and, in particular, the reference type 

(Section 5.2.2.2) which realizes configuration references. 

• I4: Integration with existing domain-specific languages. Due to its specialized 

nature, we consider this as a low-priority requirement, but analyse this further in 

Section 3.6. The IVML supports the specification and embedding of DSL code, 

passing configured decision values to a DSL interpreter and using the result of the 

DSL interpretation in the IVML (Section 5.2.5). This restricts the kinds of possible 

DSL-integrations. We are further analysing the need for DSL-integration, its 

specific requirements and further ways to address this. 

• I5: Automatic deduction of lower-level configuration choices from higher-level 

configuration selections. This is subsumed by requirement S5. This requirement 

is realized in the IVML by defining constraints (Section 5.1.4) that restrict a (set 

of) decision variable based on the values of other decision variables. 

• I6: Definition of numerical constraints. This is subsumed by requirements G6, S7, 

S8. In the IVML this is realized by relational and arithmetic constraints (Section 

5.1.4) 

• I7: Definition of binding-time dependencies of constraints. This is implicitly 

handled in the IVML according to the point of time when models are composed, 

i.e. when the definition of the constraints becomes available. This may also 

happen at later binding-times, e.g. deployment or even runtime. 

• I8: Definition of different views (according to different criteria) of the variability 

model to reduce the complexity a user has to deal with. This requirement is 

realized by supporting the definition of different interfaces of projects (Section 

5.2.3.3). Each interface can be seen as a different view on the project exporting 

the corresponding modelling elements. 

• I9: Working with defaults, including complete default profiles describing defaults. 

This may be handled as well on the tool level. The IVML realizes this requirement 

by supporting the definition of default values for decision variables (Section 

5.1.3) including single variables and compounds. The variables of an entire 
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project may have default values representing an entire default profile. In 

addition, a project may derive from another one by only importing it and 

assigning default values. Thus, the project implements a default profile. 

• I10: Integrated configuration of modularized (and composite) product lines. This 

is mostly subsumed by S12 and S15. The IVML integrates modelling and 

configuration of projects (Section 5.1.1) which, in particular, applies to 

modularized projects, i.e. projects which define at least one interface (Section 

5.2.3.3), and composition of projects (Section 5.2.3.2). 

• I11: Integration with legacy product lines. In particular, the harmonized 

configuration of different product lines. This is mostly subsumed by S12 and S15. 

This requirement is realized by supporting the import and composition of 

projects (Section 5.2.3.2), the use of the imported modelling elements as well as 

the configuration of all available (unfrozen) decision variables with respect to 

their constraints. 

 

5.4 Summary 

In the previous sections we described the concepts of the INDENICA Variability 

Modelling Language (IVML). The descriptions of the concepts included the syntax of 

the concepts, the provided keywords that are required to define the IVML elements 

and expressions, as well as detailed syntax descriptions and examples. Finally, we 

provided a summary on how the requirements collected in Section 2 are 

implemented by the IVML, i.e. to which degree individual requirements are realized 

by the language. 

The IVML provides for stepwise enhancement of expressiveness by means of core 

language and advanced modelling concepts. The concepts of the core modelling 

language are based on the results of the discussion in Section 3, while the concepts 

of the advanced modelling language rely on the discussion in Section 4. The 

INDENICA variability modelling core language supports basic and compound types, 

including the definition of individual or derived types, for defining decision variables 

as well as a corresponding set of constraints for dependency management. These 

concepts are sufficient for basic variability modelling as described in Section 3. The 

advanced modelling concepts provide capabilities like the attachment of additional 

attributes to modelling elements, extension mechanisms, partial configuration, etc. 

These concepts address the specific requirements for variability modelling in service-

based systems and, in particular, in the INDENICA project as described in Section 4. 

In addition, the IVML provides a lightweight concept for including domain-specific 

languages (DSLs) as part of the variability model. This is to support situations, in 

which the variability may be expressed more intuitively or more naturally using DSLs. 

The summary on how the requirements collected in Section 2 are implemented by 

the IVML shows that this variability modelling language completely supports the 

required modelling capabilities for the INDENICA project. However, further 

enhancements may occur to increase the ease of using the IVML. If they will occur, 

they will be shown in future deliverables (D2.2.2). 
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6 Application of IVML in the INDENICA Case Studies 

This section analyses the application of IVML concepts in the industrial case studies 

described in Deliverable D5.1. We will consider (preliminary) variability models 

created by partners during early evaluations of IVML as well as models developed 

during implementation of the case studies. As part of the analysis, we will discuss 

semantically meaningful fragments of the variability models of the three INDENICA 

case studies. This section is organized in a similar order to the introduction of IVML 

concepts in section 5, i.e., we will first show the usage of the basic concepts in 

Section 6.1 and then the application of advanced concepts in Section 6.2. Finally, in 

Section 6.3 we will summarize the overall application of IVML concepts in the three 

INDENICA case studies. 

6.1 Application of the Core Language 

In this section, we will discuss fragments from the variability models of the INDENICA 

case studies, which illustrate the application of the core concepts of IVML. We will 

start with the Remote Maintenance case as the structure of the model allows to 

easily present a fragment representing an entire IVML project. Then we will discuss 

fragments from the Warehouse and the Yard management case. 

project Remote_Maintance { 
    enum ServiceState {full, point2point, off}; 
 
    ServiceState videoCalls = ServiceState.point2po int; 
    ServiceState audioCalls = ServiceState.full; 
    Boolean changeUsersInCall = true; 
 
    videoCalls = off and audioCalls = off 
      implies changeUsersInCall = false; 
}  

Figure 10: Fragment from the variability model of the Remote Maintenance case study. 

Figure 10 shows a fragment of the variability model for configuring a virtual machine 

in the Remote Maintenance Case. Figure 10 illustrates the declaration of a project 

(cf. Section 5.1.1), the definition of an enumeration (cf. Section 5.1.2.2) as well as 

the declaration of decision variables (cf. Section 5.1.3) using the previously defined 

enumeration and the basic type Boolean (cf. Section 5.1.2.1). While 

changeUsersInCall  is a Boolean decision variable (optional selection), 

videoCalls  and audioCalls  represent alternative selections among three states. 

The fragment in Figure 10 also illustrates a constraint on the defined decision 

variables (cf. Section 5.1.4). This constraint states that if the capabilities for 

videoCalls  and audioCalls  are disabled, changing users in a call 

(changeUsersInCall ) is not supported. 

Figure 10 explicitly depicts the definition of the containing project. However, in the 

fragments below we will concentrate on the specific use of selected IVML concepts 

and will not provide a project definition, unless it is explicitly required. 
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typedef forkNumber Integer with (forkNumber >= 0 
    and forkNumber <= 8);   
 
compound rackOperatorType { 
   Integer maxSpeed;  
   forkNumber forkCount;  
} 
 
compound laneType { 
   Integer maxX, maxY; 
} 
 
compound highRack { 
   sequenceOf(laneType) rackLanes;  
}  

Figure 11: Simplified fragment from the WMS variability model. 

Figure 11 shows a fragment from the variability model of the Warehouse 

Management System (WMS) case study29. This fragment defines the constrained 

Integer type forkNumber  using type derivation (cf. Section 5.1.2.4). The type 

derivation, in turn, puts a constraint on all the decision variables of type 

forkNumber , e.g., on the decision variable forkCount  in the compound (cf. 

Section 5.1.2.5) rackOperatorType . Further, the compound highRack  defines a 

decision variable rackLanes  as a collection (cf. Section 5.1.2.3) of instances of the 

compound laneType .  

The WMS variability model particularly aims at specifying the topology of 

warehouses supported by the underlying WMS and to configure the specific 

topology of a certain warehouse at a customer site. This is achieved by combining 

decision variables of different compound types, each capturing information of a 

specific aspect of a warehouse. In Figure 11 this is illustrated in terms of the 

individual compound declarations and their nesting using a container decision 

variable.  

Please note that Figure 11 is a fragment for illustrating the use of the core concepts 

of IVML in the context of the WMS case study. In particular, constraints and 

relationships among the individual types defined in that model are not discussed in 

this section as they rely on advanced modeling concepts although these relationships 

are important for modeling and finally configuring the topology of a certain 

warehouse. 

  

                                                      
29

 Please note that the original model uses German terminology. In order to support readability in this 

deliverable, we translated the terms to English. 
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enum Location {cell, gps}; 
enum SchedulingType {simple, locationBased};  
     
compound yjs { 
    SchedulingType scheduling; 
    Location location; 
} 
 
sequenceOf(yjs) ModuleList;  
Boolean gps; 
 
gps implies ModuleList->forAll(t |  
    t.location = Location.gps);  

Figure 12: Simplified fragment form the YMS case study. 

Figure 12 depicts a fragment from the variability model of the Yard Management 

System (YMS) case study. At first glance, it uses similar core IVML concepts as the 

fragments shown above such as the definition of enumerations (cf. Section 5.1.2.2), 

of compounds (cf. Section 5.1.2.2) and decision variables (cf. Section 5.1.4) using 

basic types (cf. Section 5.1.2.1) as well as container types (cf. Section 5.1.2.3).  

In contrast to the fragments shown above, this model specifies the variability within 

subsystems of the YMS. In Figure 12, a part of the variability of the Yard Jockey 

Support (yjs ) subsystem is shown. Yard jockeys are informed about new tasks 

according to a scheduling  mode, which may either lead to simple  task 

assignments or to locationBased  assignments. The relationship among the 

alternatives expressed by the decision variables of yjs  and their individual types is 

further specified by a constraint shown at the bottom of Figure 12. This constraint 

states that if gps  (given as a global decision variable) is enabled, the location  

mode of all decision variables of compound type yjs  in ModuleList  (quantor 

expression) must be gps  (defined by the enumeration Location ). 

project WMS_Configuration {  

    autoLaneType wms; 

    wms = {maxX = 5,  

           maxY = 7,  

           rackOperatorType = {maxSpeed = 42, 

                           forkNumber = 5}}; 

}  

 

Figure 13: Configuration of decision variables in the WMS case study. 

All three industrial use cases apply the configuration of decision variables (cf. 

Section 5.1.5). An example configuration of the WMS model is shown in the 

fragment in Figure 13. The fragment illustrates the configuration of the decision 

variable wms, which is declared as a variable of type autoLaneType .  
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During the initial evaluations of IVML by the INDENICA partners it was highlighted 

that such configurations, which exclusively rely on domain terminology appear 

natural to domain experts.  

6.2 Usage of Advanced Concepts 

In this section, we will discuss the application of the advanced modelling concepts of 

IVML in the INDENICA case studies. Following the structure of Section 5.2, we will 

start with an example for attributes, continue with versioned project composition, 

and end this section with compound extension. 

project Remote_Maintenance { 
    version 0.5; 
 
    enum BindingTimes {compile = 0, deployment = 1, 
        runtime = 2}; 
     
    attribute BindingTimes bindingTime  
        = BindingTimes.compile to Remote_Maintenance; 
 
    // contents from Figure 10 follows here 
 
    enum ServiceState {full, point2point, off}; 
 
    ServiceState videoCalls = ServiceState.point2po int; 
 
    // … 
} 

Figure 14: Fragment of the compiletime variability model from the  

Remote Maintenance case study. 

In INDENICA, variability models will be instantiated at different times throughout 

the software lifecycle (binding time), in particular at compile time, deployment 

time, and runtime. Currently, the YMS as well as the Remote Maintenance use 

case specify variability with different binding times. Below, we will illustrate the 

usage of meta-variabilities, more specifically binding times, using the IVML 

concept of attributes (cf. Section 5.2.1).  

Figure 14 depicts a fragment from the Remote Maintenance case study, more 

precisely, Figure 14 illustrates the compile time part of the variability model. The 

entire variability model of the Remote Maintenance case consists of multiple 

projects, which are finally composed to a single variability model.  

The project Remote_Maintenance  shown in Figure 14 defines an ordered 

enumeration of binding times, i.e., an implicit partial order of the enumeration 

literals so that compile time can be considered as a predecessor of deployment 

time, which, in turn, acts as a predecessor of runtime. Further, it defines an 

attribute called binding time with default value compile  (from the previously 

defined enumeration) and attaches this attribute to the entire project, i.e., also to 

all contained decision variables. This attribute will be considered during 

instantiation, i.e., decision variables attributed for compile time must be 
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configured before the related variability instantiation mechanism will modify any 

generic artefacts. 

In addition, the project Remote_Maintenance  shown in Figure 14 declares its 

own version (here 0.5, cf. Section 5.2.3.1) which will be relevant when we now 

discuss the application of project compositions in the INDENICA case studies. 

project Remote_Maintenance_Runtime { 
     
    import Remote_Maintenance with  
        (Remote_Maintenance.version >= 0.5); 
 
    attribute BindingTimes bindingTime  
       = BindingTimes.runtime to Remote_Maintenance_Runtime; 
 
    compound ServerState {  
        Real freeMemory; 
        Real cpuUsage; 
        Integer availableVMs; 
    } 
 
    Integer currentUsers; 
    Integer currentVMs; 
 
    ServerState currentServerState; 
    Boolean serversAtHalfFullSpeed; 
    Integer additionalVMs; 
 
    serversAtHalfFullSpeed =  
        currentServerState.freeMemory < 0.2  
        or currentServerState.cpuUsage > 0.8; 
 
    currentUsers / currentVMs > 10000  
      implies additionalVMs > 0; 
 
} 

Figure 15: Fragment of the composed runtime variability model from the Remote 

Maintenance case study. 

Figure 15 depicts a fragment of the runtime variability model part of the Remote 

Maintenance case study. Please note that all industrial partners modularized their 

models into multiple projects for different reasons such as building small and 

understandable units or grouping together variables of the same binding time. 

The project Remote_Maintenance_Runtime  shown in Figure 15 imports another 

project through project composition (cf. Section 5.2.3.2), here the compile time 

part. Further, it also defines an attribute denoting the binding time for the project 

and its contents, here with runtime  as default binding time. Please note that the 

enumeration BindingTimes  is not redefined in this project as it is available 

through the import of Remote_Maintenance . Further, please note that the import 

of Remote_Maintenance  is constrained by a minimum version number (cf. 

Section 5.2.3.1). This is due to the fact that previous versions of the variability 
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model for the Remote Maintenance use case did not contain binding times, i.e., the 

enumeration BindingTimes  was not defined, and so the use of these outdated 

models must be prevented. 

The project Remote_Maintenance_Runtime  defines several decision variables to 

be resolved at runtime, such as the server state, overall numbers of virtual 

machines in use or even the actual number of users working on the platform. In 

addition, the first constraint influences the speed of the servers at runtime 

(serversAtHalfFullSpeed ) while the second constraint requires (some) 

addition virtual machines (additionalVMs ) due to an arithmetic calculation of a 

derived metric. 

typedef forkNumber Integer with (forkNumber >= 0  
    and forkNumber <= 8); 
 
compound rackOperatorType { 
    Integer maxSpeed;  
    forkNumber forkCount;  
} 
 
compound laneType { 
    Integer maxX, maxY; 
} 
 
compound autoLaneType refines laneType { 
    rackOperatorType operatorDevice;  
} 

compound highRack { 
   sequenceOf(laneType) rackLanes;  
}  

Figure 16: Compound refinements in the WMS variability model. 

Both, the WMS and the YMS case study rely on the extension of compounds (cf. 

Section 5.2.2.1). Figure 16 illustrates compound refinements in the WMS model. 

Here, the compound autoLaneType  refines the compound laneType , i.e., lanes 

with automated rack operators (autoLaneType ) are also lanes (laneType ) but 

provide additional variability. In IVML, extended compounds are similar to subclasses 

in object orientation, i.e., autoLaneType  is also of type laneType  and, thus, 

instances of autoLaneType  may be used to define the rackLanes  of a highRack . 

(The difference is of course that as opposed to object orientation no methods can be 

defined as IVML does not directly support the modeling of activities.) If not further 

restricted by constraints, a highRack  may consist of both kinds of lanes 

(heterogeneous collection). In addition, future versions of the WMS may even 

provide new types of lanes with individual variability (open-world scenario). This can 

easily be integrated into existing variability models through extension and project 

composition. 

Finally, the configuration of a variability model is used for instantiating the 

underlying product line artefacts. Instantiation mechanisms will take the 
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configuration as an input and modify generic artefacts in the solution space 

accordingly. However, configurations may change along project compositions, i.e., 

some imported projects may define a preconfigured profile of a platform, which is 

(partially) overridden later. For the final instantiation step, only stable configurations 

can be considered, i.e., those decision variables which are frozen (cf. Section 

5.2.4.2). We will demonstrate this in terms of the WMS fragment already shown in 

Figure 13. 

import WMS_Configuration; 

freeze { 

    wms; 

}  

Figure 17: Freezing configuration values in the WMS case study. 

Figure 17 imports the (partial) configuration from the project shown in Figure 13. 

Thereby, the imported project is implicitly evaluated and wms receives a value, which 

is, however, only a default value. In order to use it as a basis for the final 

instantiation, the decision variable wms is frozen as shown in Figure 17. However, 

having a configuration project and a freezing project is not always a practical 

approach, in particular for tool support. Thus, a semantically equivalent model can 

be expressed using the partial evaluation mechanism (cf. Section 5.2.4.3). 

import WMS; 

eval { 

    wms = {maxX = 5,  

           maxY = 7,  

           rackOperatorType = {maxSpeed = 42, 

                               forkNumber = 5}}; 

} 

freeze { 

    wms; 

}  

Figure 18: Combination of partial evaluation and freezing a configuration  

in the WMS case study. 

Figure 18 depicts the combination of partial evaluation and freezing variables in one 

project. The fragment imports the WMS variability model (an extension of Figure 12), 

evaluates and then freezes the configuration. This combination of partial evaluation 

with freezing is required as IVML does not provide support for defining the order of 

evaluation, i.e., without partial evaluation it is not guaranteed the configuration is 

defined before freezing the variables. As partial evaluations are executed inside-out 

according to their nesting, first the partial evaluation block, i.e., the configuration is 

processed and then the configuration is frozen as specified. 
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Currently, the configurations of the variability models in the use case studies use 

either the first or the second approach to specify their final configuration for 

instantiation. 

6.3 Overview on IVML Concepts used in INDENICA case studies 

In this section, we summarize the IVML concepts used in the INDENICA case studies 

so far in terms of a mapping of concepts to the case studies. Please note that we 

discussed only fragments of these models in the sections above. This mapping of 

language concepts to case studies is summarized in Table 3. 

IVML-Level IVML Concept YMS WMS Remote 

Maintenance 

Core 

Language 

Project x x x 

Basic types: Boolean, 

Integer, Real, String 

Integer, 

String, 

Boolean 

Integer Integer, Real, 

Boolean, String 

Enumerations x - x 

Container x x - 

Type derivation and 

restriction 

- x - 

Compounds x x x 

Decision variables x x x 

Constraints x x x 

Configurations x x x 

Advanced Attributes x - x 

Extended compounds x x - 

Referenced elements - - - 

Project versioning - - x 

Project composition x x x 

Project interfaces - - - 

Partial configuration - - - 

Freezing configurations x x x 

Partial evaluation x x - 

DSL inclusion - - - 

Table 3: Overview of currently used IVML concepts in INDENICA case studies. 

Although the variability models as well as the case study implementations are still 

under development, all the core IVML concepts as well as most of the advanced 

language concepts are already used in the INDENICA case studies.  

However, there are some of the advanced language concepts, which are currently 

not used in any case study. This is due to the fact that the case studies and their 

variability models are currently under development and the models will evolve until 

the end of the INDENICA project. We expect that modularization and model 

composition will be used extensively when the complexity and size of the models 

increase. For example, the WMS model is already modularized into small parts with 

related constraints but information hiding through interfaces is yet not established. 

Further, the partners aim at creating a global variability model for all three service 
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platforms in order to enable cross-platform variability including constraints. We 

expect that this will lead to the use of interfaces as the internals of the individual 

variability models shall not be visible in the global model in order to simplify 

modelling as well as configuration. As part of these activities, also partial 

configuration will be used as a natural extension of already used configuration 

concepts. Moreover, we also expect the use of configuration references, in 

particular in the WMS case study, as this concept specifically supports the creation of 

networks and the specification of complex topologies.  

While we are confident about the advanced concepts mentioned above, we also see 

that the need for the inclusion of domain-specific languages decreased since the 

requirements elicitation phase for IVML. One particular feedback from our industrial 

partners in applying IVML is that textual variability configurations appear natural to 

domain experts as also mentioned in Section 6.1. Thus, we decreased the priority for 

DSL inclusion during the design phase of IVML and provide just a basic mechanism to 

realize requirement I4. 

It should also be emphasized that even if some of the concepts will not be exploited 

in the final use case studies, this does not necessarily mean that these concepts were 

superfluous or inappropriate. For example configuration references were introduced 

based on a different use case provided by Siemens, which was intensively discussed, 

but later the decision was made that these case studies should not be further 

pursued in favour of the finally chosen ones. It was our aim with the IVML to provide 

a language that ideally covers the challenges of service platform configuration as 

broad as possible. Thus, the absence of some concepts in some case studies does not 

lead to the inappropriateness of the corresponding language in the same way as the 

fact that some language elements are not used in a specific program is no indication 

of the inappropriateness of this program language.  

What we see as the main evaluation criterion is that language is able to cover all 

relevant cases. Here, the experiences in the industrial case studies were very 

positive. We also discussed the language with other industrial partners outside the 

project and got very positive feedback as well. Thus, we currently assume that this 

language is very well suited for the configuration of service platforms.  
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7 Conclusion 

In this deliverable, we aimed at determining the core expressiveness of the 

INDENICA variability modelling language and further extensions that arise from the 

specific requirements of the INDENICA project. As a consequence, the structure of 

this deliverable followed the distinction of core modelling aspects and advanced 

variability modelling extensions. 

In a first step, we identified and defined the requirements for variability modelling in 

INDENICA. This information was derived from multiple sources, including general 

variability modelling requirements, demands for variability modelling in service-

based systems and feedback from the industrial partners in the project. The set of 

requirements served as a basis for the discussions and decisions towards the 

concepts of the INDENICA variability modelling language. 

In Section 3, we discussed core variability modelling concepts. The focus was to 

categorize different variability modelling concepts with respect to their 

expressiveness. This discussion covered the supported types of modelling elements 

and the provided dependency management capabilities. On this basis, we identified 

the required core expressiveness of the INDENICA approach to satisfy general 

variability modelling requirements as well as to provide a basis for the advanced 

modelling concepts in an effective and easy to use manner. 

Section 4 focused on advanced variability modelling concepts to provide an overview 

of additional extensions to core variability modelling that are required by the 

INDENICA project. Again, we discussed the required modelling elements and 

dependency management capabilities for modelling, e.g. Quality of Service (QoS) and 

meta-variabilities. We emphasize concepts like modularity and extensibility as these 

are mayor issues, in particular, in service and service platform ecosystems. Some 

identified concepts were already covered by the concepts we demand for the 

INDENICA core modelling language in Section 3 (e.g. non-Boolean variability to 

express quantitative properties for QoS). 

Section 5 then introduced the concepts of the INDENICA variability modelling 

language. These concepts were selected based on the results of our previous 

discussions in Section 3 and Section 4. The main contribution is to provide a 

variability modelling language that satisfies all identified requirements in Section 2 in 

an effective and easy to use manner. The core modelling concepts of the INDENICA 

variability modelling language enable the modelling of basic variabilities. The 

advanced modelling concepts extend the core concepts to satisfy the specific 

demands that arise in the INDENICA project. Again, ease of use for the most 

standard issues was important, so we extended the core concepts in a way so that 

their use is not complicated for users who do not need the more advanced features. 

Section 6 analyzed the application of IVML variability modeling concepts in the 

industrial case studies in INDENICA. Therefore, we discussed fragments of the 

variability models created for the base platforms by the industrial partners in terms 

of their support for core language concepts and advanced language concepts. We 
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summarized the application of concepts and showed that all basic concepts as well 

as almost all advanced concepts of IVML are used in the case studies. For concepts, 

which are currently not used, we discussed their expected use until the end of the 

project. In summary, we are confident that all concepts except for DSL inclusion will 

be used in INDENICA. Moreover, the experience in the project so far is that all we 

found basically all relevant concepts based on our detailed requirements analysis. 

We thus expect that there will be only rather minor extensions to the language till 

the end of the project, if any.  

Further work on the IVML will focus on the deep integration with the concepts 

discussed in deliverable D2.2.1 and the systematic evaluation based on the project 

case studies. 
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