
Document ID: INDENICA – D1.3.2

Deliverable Number: D1.3.2

Work Package: WP1

Type: Deliverable

Dissemination Level: PU

Status: final

Version: 1.0

Date: 2013-09-30

Author(s): SUH, SAP, SIE, PDM, TEL, UV

Project Start Date: October 1
st

 2010, Duration: 36 months

Document ID: INDENICA - D1.3.2

Engineering Virtual Domain-Specific
Service Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

INDENICA aims at providing a basis for decision making in the architecting and

variability resolution of customizable service platforms. This decision making is a

rather complex activity, which provides a sophisticated engineering challenge.

Correctly identifying the many design alternatives and resolving the corresponding

decisions is a challenge that requires adequate support.

This deliverable describes the support that the INDENICA architecture and variability

tools provide for decision making. We emphasize on architectural decision making

and its integration with variability decision making. (The details of the variability

decision making are described in deliverables D2.2.2 and D2.4.2)

Decision Support Framework for

Platforms as a Service (Final)

Version

0.1 17 September 2013 Document structure for integration defined

0.2 24 September 2013 Section 2 added

0.3 27 September 2013 Revised Section 2

0.4 30 September 2013 Section 3 added

1.0 1 October 2013 final version

Document Properties

The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction ... 5

2 Architecture Decision Making – ADvISE Tooling .. 6

2.1 Related Work and Tools .. 6

2.2 ADvISE Eclipse plug-ins ... 7

2.2.1 ADvISE .. 8

2.2.2 FuzzDS .. 8

2.2.3 AK Transformation Language ... 9

2.3 Plug-in Dependencies and Technologies .. 9

2.4 Architectural Decision Meta-model .. 10

2.5 Installation .. 11

2.6 User’s Guide .. 12

2.6.1 ADvISE .. 12

2.6.2 FuzzDS .. 21

2.6.3 AK Transformation Language ... 23

3 A Tool-Based Approach to Integrated Variability- and Architecture-Decision-

Making .. 24

3.1 Model Variability ... 24

3.2 Model Architectural Decisions .. 25

3.3 Define Mapping .. 26

3.4 Resolve Variability ... 27

3.5 Resolve Remaining Architectural Decisions .. 28

3.6 Wrap-Up .. 29

4 Summary and Conclusion .. 30

5 References ... 31

6 Appendix: Conceptual Integration of Variability Decision Making and Architecture

Decision Making .. 33

INDENICA D1.3.2

4

Table of Figures

Figure 2-1: Plug-ins Overview .. 8

Figure 2-2: Plug-ins Dependencies ... 10

Figure 2-3: Architectural Decision Model .. 11

Figure 2-4: Installation from Update Site .. 12

Figure 2-5: ADvISE Perspective .. 13

Figure 2-6: ADvISE View ... 14

Figure 2-7: Questionnaire View ... 14

Figure 2-8: Design Patterns Tab ... 15

Figure 2-9: Design Solutions Tab .. 16

Figure 2-10: Architectural Decisions Tab ... 17

Figure 2-11: Select the type of question .. 18

Figure 2-12: Question expecting alternative options .. 19

Figure 2-13: Question expecting free-text answer .. 20

Figure 2-14: Example of a questionnaire ... 21

Figure 2-15: Gaussian membership functions for 3 linguistic values of property

performance .. 22

Figure 2-16: Fuzzy Logic Based Approach for Supporting Architectural Decision

Making.. 23

Figure 3-1: Textual view of the variability model of the WMS example modeled in

EASy-Producer .. 25

Figure 3-2: Reusable Architectural Decision Model .. 26

Figure 3-3: Synchronize Architectural Decisions Launcher.. 27

Figure 3-4: Excerpt of the mapping between variability and architectural decisions . 27

Figure 3-5: Providing values to the variability decisions of the WMS example 28

Figure 3-6: Architectural Decision Making... 29

INDENICA D1.3.2

5

1 Introduction

Creating virtual domain-specific service platforms requires very complex decision

making both on a domain-level and on an engineering level. Supporting this decision

making in a systematic manner provides the basis for reliable, consistent, and well-

engineered service platforms. In the interim version (D1.3.1), we discussed the

breadth of the problem and discussed many implications of this decision making,

along with corresponding approaches to support this. This deliverable provides a

tool-based approach that supports the decision making both from a variability and

from architecture point of view. It integrates the variability support with an

architecture support tool and thus addresses the decision in an integrated manner.

This deliverable is structured as follows. In the next section, we first introduce the

core contribution of D1.3.2: the ADvISE tool with its architectural decision support. In

Section 3, we describe how ADvISE is combined with EASy-Producer to create an

integrated decision support approach. Section 4 provides a brief summary. In Section

6 we add as additional background a paper, which further discusses the integration

of both sides. We provide this only as an appendix, because it is a paper currently

under review and was not originally written as a deliverable. However, it is

exclusively a result of the INDENICA corporation and discusses only work relevant to

this deliverable.

Further relationships to other INDENICA deliverables are:

- D 1.3.1: Realizes the approaches described in D.1.3.1

- D 2.1: Open Variability Modelling Approach for Service Ecosystems provides

the basis for modelling of variability.

- D 2.4.2: Integrates with the Variability Engineering Tool in a specific way that

addresses the needs specific to architecture decision making. Details on the

Variability Engineering Tool and the EASy-Producer User Guides are

contained in this deliverable.

- D 3.3.2: Integrates with the Tool Suite for Virtual Service Platform

Engineering.

Comments on the relation to previous work:

- The contributions described in Sections 2 and 3 were solely developed as part

of the INDENICA project and were motivated by the project. There exist

relations (as described above) to previous deliverables, however.

- Further, especially the contributions in Section 3 are currently submitted for

publication or already published.

INDENICA D1.3.2

6

2 Architecture Decision Making – ADvISE Tooling

The Architectural Design decIsion Support framEwork – ADvISE is a prototype to

support architecture decision making.

To assist decision making for reusable architectural decisions, such as the ones

needed in service-based platform integration, ADvISE is proposed for modeling

reusable architectural decisions and architectural decisions under uncertainty (using

Fuzzy Logic, (see FuzzDS for more details) at different levels of abstraction, i.e., high-

level as well as technology and domain specific levels. This approach enables us to

semi-automate the decision making process for recurring architectural decisions and

document the design rationale at low cost. This way, we support software architects

in recurring design making processes, so that they can have more time left to spend

on the challenging architectural problems that require creative thinking.

Apart from that, in order to keep architectural decisions and designs consistent and

traceable to each other, we introduce formal links between the reusable

architectural decisions and architectural designs. We achieve that by integrating

ADvISE with VbMF (WP3). Thus, we provide maintenance support for evolving

architectural decisions and designs. In particular, using the Architectural

Knowledge(AK) Transformations Toolkit, a bridge between architectural decisions

modeled in ADvISE and the architectural designs modeled with VbMF, we are able to

automatically generate architectural designs from actual decisions and check for

inconsistencies between them.

In the following, we present step by step how to model reusable architectural

decisions and decisions under uncertainty and how to use these models to support

software architects in architectural decision making. It also explains how to integrate

architectural decisions in ADvISE with architectural designs using the AK

Transformation Language. ADvISE, as well as the rest of the tools integrated with it,

can be adapted and modified according to the developers’ needs, as they are all

available as open-source Eclipse plug-ins.

2.1 Related Work and Tools

In recent years, software architecture is no longer solely regarded as the solution

structure, but also as the set of architectural design decisions that led to that

structure [1]. The actual solution structure, or architectural design, is merely a

reflection of those design decisions. Architectural design views [5] document the

design rationale of the architecture and contribute to the gathering of Architectural

Knowledge and its sharing among different stakeholders.

Capturing architectural design decisions is important for analyzing and

understanding the rationale and implications of these decisions and reducing the

problem of architectural knowledge vaporization [2]. Several approaches have been

proposed for capturing architectural decisions. Akerman and Tyree defined a rich

decision-capturing template [3]. Kruchten et al. presented an ontology for

INDENICA D1.3.2

7

architectural decisions, defining types of architectural decisions, dependencies

between them and a decision lifecycle [4], [5]. Zimmermann et al. suggested a

metamodel for decision capturing and modeling [8]. These approaches concentrate

on the reasoning on software architectures, capturing and reusing of AK as well as on

the communication of the design decisions between the stakeholders.

Architectural decisions are the result of making trade-offs for the quality attribute

requirements. For example, in the Architecture Tradeoff Analysis Method (ATAM)

and Attribute-Driven-Design Method (ADD) [6] the analysis of architectural trade-

offs is an important part of the architectural decision making process. Bachmann et

al. suggest a reasoning framework with quality attribute knowledge to help

architects make trade-offs that impact individual quality attributes in an architecture

[7]. These and other approaches for supporting architectural decision making have

not been integrated with tools for modeling and documentation of architectural

decisions.

In addition, there has been much effort on the documentation of reusable

architectural decisions, that can be used as reusable architectural knowledge assets

[8–10]. Several tools have also been developed to ease capturing, managing and

sharing of architectural decisions [11], [12]. Knowledge Architect [13], Archium Tool

[14], ADDSS [15], PAKME [16], Architech [17] and ADkwik [18] are examples of tools

that provide support for architectural decision documentation and ease the

architectural knowledge management. In most of the cases, the focus is set on the

collaboration, the manipulation of architectural decision artifacts and their

relationships, and the capturing and reuse of architectural knowledge. Automated

support for architectural decision making and for architectural decisions under

uncertainty, as well as their connection to the corresponding designs, for supporting

traceability and consistency between decisions and designs, are not addressed in any

of the aforementioned tools. This is mainly the gap we intend to bridge by

introducing the ADvISE tooling.

2.2 ADvISE Eclipse plug-ins

The ADvISE tool as well as the tools that have been integrated with ADvISE are

developed as Eclipse plug-ins organized in features. An Eclipse based product is

structured as a collection of plug-ins and each plug-in contains the code that

provides some of the product’s functionality. Product plug-ins are grouped together

into features, i.e., units of separately downloadable and installable functionality. The

Eclipse platform itself is structured as subsystems which are implemented in one or

more plug-ins.

Figure 2-1 illustrates the available features (ADvISE, FuzzDS and AK Transformation

Language) and the plug-ins they include
1
.

1
 Please note that the plug-ins here described in terms of their functionality and not in terms of physical Eclipse projects.

INDENICA D1.3.2

8

In the following, a short overview of the plug-ins’ functionality is given.

2.2.1 ADvISE

ADD Models: It contains the definition of meta-models for modeling of reusable

architectural decisions based on Questions, Options and Criteria (QOC) [19] and

questionnaires for decision support. Also, the code for creating, modifying and

persisting the architectural decision models.

ADD Wizards: It provides Eclipse wizards for creating ADvISE projects and models.

ADD Documentation: The documentation of architectural decisions and their

rationale can be generated automatically from the answered questionnaires.

ADD Editors: Two kinds of editors are provided. One for editing the architectural

decision models and one for editing the questionnaires generated from these

models. Also, the questionnaires for assisting architectural decision making are

generated automatically from the decision models.

ADD Views: It provides two customized Eclipse views, one for the management of

resources and one for visualizing the decided and open decision points during

architectural decision making. This plug-in contains also code for manipulating all

related artifacts (create, delete, rename, etc.).

2.2.2 FuzzDS

FuzzDS Editor: It provides a textual Editor for editing reusable fuzzy models (based

on Fuzzy Logic and fuzzy rules) to be used for architectural decision making under

uncertainty (see 2.2.2 for more details).

Figure 2-1: Plug-ins Overview

INDENICA D1.3.2

9

Fuzzy Inference Engine: The Fuzzy Inference Engine infers the best-fitting solutions

in a specific context (based on the fuzzy models) given specific requirements by

leveraging the fuzzy models that have been edited with the FuzzDS Editor.

2.2.3 AK Transformation Language

AK Transformation Language Editor: The transformation from actual decisions to

design views is achieved by executing transformation actions that apply to these

views. These transformation actions (simple or compound) can be edited using the

AK Transformation Language Editor. Not only transformation actions but also

templates of transformation actions can be edited using this editor. The .action files

can be, thus, also edited using a template language editor (Velocity).

ADDs-to-Views Binder: Transformation actions that are edited in template form

need to be bound to actual values when actual decisions are made. The bound

actions are executable and can afterwards transform the design views.

AK Transformation Engine: The transformation actions enact on the design views

using the AK Transformation Engine. Also, consistency checking rules (constraints)

for checking the conformance of the architectural decisions to the corresponding

designs are generated as soon as the transformation actions modify the design

views.

Consistency Checker: It validates the constraints for consistency checking between

architectural decisions and designs and highlights detected inconsistencies.

2.3 Plug-in Dependencies and Technologies

Figure 2-2 shows the dependencies between the various plug-ins introduced before,

as well as the technologies and frameworks they are based on. ADvISE (with its

integrated tools) is an Eclipse RCP application
2
. FuzzDS can be used either stand-

alone or through the ADvISE user interface. The AK Transformation Language

requires both ADvISE and the VbMF Framework plug-ins as it works as a bridge

between these tools.

The grammars for the AK Transformation Language (DSL) as well as the FuzzDS DSL

were created with Xtext framework
3
. Xtext is also used to generate Eclipse-based

textual editors that can support several useful features such as syntax highlighting,

content assist and auto-completion, validation and quick fixes, automated external

cross-references resolutions, and so on. The Eclipse Modeling Framework (EMF)
4

project was used to create all required models (e.g., architectural decision models)

and the code for editing these models. Where model-to-model or model-to-text

generation is required (e.g., AK Transformation Engine) Xtend2
5
 was used. The

2
 http://www.eclipse.org/home/categories/rcp.php

3
 http://www.eclipse.org/Xtext/

4
 http://www.eclipse.org/modeling/emf/

5
 http://www.eclipse.org/xtend/

INDENICA D1.3.2

10

template binding of transformation actions and constraints in template form was

done with the Velocity Template Engine
6
. Finally, the fuzzy inference system of the

open-source jFuzzyLogic package
7
 was adapted for the needs of FuzzDS.

2.4 Architectural Decision Meta-model

Architectural decision models (see in Figure 2-3) contain architectural decisions -

decision points and for each decision point a set of questions along with potential

options or answers are introduced. The selection of an option can lead either to a

solution (often pattern-based) or trigger follow-on decisions and questions. A

question that requires a free-text answer can also be followed by a next decision or

question. Also, an option can constrain other options (e.g., force or be incompatible

with).

6
 http://velocity.apache.org/

7
 http://jfuzzylogic.sourceforge.net/

Figure 2-2: Plug-ins Dependencies

INDENICA D1.3.2

11

2.5 Installation

The Eclipse plug-ins have been developed and currently work stably in

http://www.eclipse.org/indigo/Eclipse 3.7.2 (Indigo). To install ADvISE go to Help →

Install New Software... and add the ADvISE Update Site –

http://indenica.swa.univie.ac.at/public/advise to download the latest version of the

tool.

At this point you can select the features you want to install. Note that ADvISE

requires FuzzDS and that AK Transformation Language requires ADvISE and VbMF. To

save time you can download the Eclipse version with the Eclipse Modeling Tools

from http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr2

and afterwards download the latest versions of Xtext and Xtend2 from the

corresponding Update Site. In order to install and use ADvISE you have to install the

Eclipse Modeling Framework (EMF), Xtend2 and Xtext.

Figure 2-3: Architectural Decision Model

INDENICA D1.3.2

12

2.6 User’s Guide

In this guide, the functionality of the ADvISE tooling is presented step-by-step.

2.6.1 ADvISE

ADvISE Perspective

The ADvISE perspective (see Figure 9) contains all views and editors (parts) that are

used when working with ADvISE and the tools integrated with it. To activate the

perspective go to Window → Open Perspective → Other... → ADvISE.

Figure 2-4: Installation from Update Site

INDENICA D1.3.2

13

ADvISE Views

ADvISE offers two types of views: the ADvISE View for the management of models

and questionnaires and the Questionnaire View which gets synchronized when

questionnaires for architectural decision making are filled in, and shows unassigned,

assigned and made decisions in real-time. Questionnaires are generated from the

reusable architectural decision models modeled using the ADvISE tool and contain

questions with alternative options that can be selected or answer fields. For a

detailed presentation of the questionnaires refer to Architectural Decision

Questionnaires.

Available actions provided in ADvISE View:

 1. Create new architectural decision model

 2. Create new group for organizing architectural decision models

 3. Rename group/architectural decision model/questionnaire

 4. Delete group/architectural decision model/questionnaire

 5. Refresh all projects

 6. Validate architectural decision model

 7. Generate Questionnaire (from architectural decision model)

 Questionnaire View:

 • Decisions group contains all made decisions

 • Unassigned questions have not been answered yet

Figure 2-5: ADvISE Perspective

INDENICA D1.3.2

14

 • Assigned questions have been already answered

 • Questions indicated with (M) are mandatory

 • Questions indicated with (O) are optional

 • Questions in green color are activated

 • Questions in gray color are deactivated

Activate Views: To activate the ADvISE and Questionnaire Eclipse views separately

go to Window → Show View → Other... Under the group ADvISE activate the views

ADvISE View and Questionnaire View.

ADvISE Wizards

ADvISE also provides two wizards to create new ADvISE projects and ADvISE decision

models.

New ADvISE Project: To create a new ADvISE project go to File → New → Other...

→ ADvISE wizards and select ADvISE Project. A new project with the following

structure is created:

 • project_name

 - Decision Groups (root folder for architectural decision models)

 * ADModel (empty architectural decision model)

 - Questions (root folder for questionnaires)

Figure 2-6: ADvISE View Figure 2-7: Questionnaire View

INDENICA D1.3.2

15

New ADvISE Decision Model: To create a new ADvISE model go to File → New →

Other... → ADvISE wizards and select Architectural Decision Model. An empty

decision model (with extension .admodel) is created in the selected folder. The

decision model editor contains 3 tabs: Architectural Decisions, Design Solutions and

Design Patterns for editing the architectural decisions and the solutions and patterns

related to them. Every time you edit your model (and the workspace resources are

refreshed) the “Save” and “Save all” buttons get activated. Press “Save All” to save

all the changes you have done so far or the “Undo” button to undo the changes

(one by one) after the last save. You can switch between horizontal and vertical view

of your editor by using the buttons and respectively.

Edit Design Patterns

Go to the Tab Design Patterns and press “Add”. A pattern with the name

NewPattern will be created. You can give the Name and Description of the pattern

and change your selection to see the changes in the list of patterns on the left. You

can delete one or more patterns by selecting the pattern(s) and pressing “Delete”.

Edit Design Solutions

Go to the Tab Design Solutions and press “Add”. A solution with the name

NewSolution will be created. You can give the Name and Description of the solution

and relate the solution to one or more Design Patterns. To add/remove related

Patterns press the buttons and under the Patterns table respectively. After

you change your selection you can see the changes in the list of solutions on the left.

You can delete one or more solutions by selecting the solution(s) and pressing

“Delete”.

Figure 2-8: Design Patterns Tab

INDENICA D1.3.2

16

Edit Architectural Decisions

Go to the Tab Architectural Decisions and press “Add”. A decision with the name

NewAD will be created. You can give the following information on the decision:

• Name: name of decision

• Level: design level for decision

• Scope: description of decision

• Status: status of decision (In Progress, Finished, Not Reviewed)

• IsFirst: indicates if it is the first decision to make before making follow-on

decisions (i.e., it indicates the first decisions to be made in the generated

questionnaire)

• Order: indicates the order of the decision as it will appear in the generated

questionnaire

Figure 2-9: Design Solutions Tab

INDENICA D1.3.2

17

Each decision entails a list of questions that have to be answered in order to make a

specific decision. To add/remove a question press the buttons and under the

table of questions respectively. You can edit a question by double-clicking it. To set a

question as first question (i.e., first question(s) to be answered for the corresponding

decision in the generated questionnaire) select the checkbox “First”. You can delete

one or more decisions by selecting the decision(s) and pressing “Delete”.

Edit Questions: You can add either a Question with Answer or a Question with

Options.

A question expecting alternative options contains the following information:

• Name: symbolic name of the question

• Question: actual question

• mandatory/optional: check if question is mandatory or optional

• Options: press the buttons and to add/delete options respectively

Figure 2-10: Architectural Decisions Tab

INDENICA D1.3.2

18

When an option is selected the following get activated:

• Solution: select the solution that corresponds to the selected option (if exists)

• next Decisions: add/delete follow-on decisions

• next Questions: add/delete follow-on questions

• forces Options: add/delete options that are forced by the selection of this

option

• incompatible Options: add/delete options that are incompatible with the

selection of this option

The Fuzzy Decision Support field can be used to add fuzzy logic decision support (see

2.2.2 for more details) between alternative options. Only .fuzzypattern files can be

selected.

A question expecting a free-text answer contains the following information:

• Name: symbolic name of the question

• Question: actual question

• mandatory/optional: check if question is mandatory or optional

• next Decisions: add/delete follow-on decisions

• next Questions: add/delete follow-on questions

Figure 2-11: Select the type of question

INDENICA D1.3.2

19

Figure 2-12: Question expecting alternative options

INDENICA D1.3.2

20

Architectural Decision Questionnaires

ADvISE framework uses model-to-model transformation to generate Questionnaires

from the architectural decision models. To generate a questionnaire from an

architectural decision model right-click on the model in the ADvISE View and click

“Generate Questionnaire”. Choose the name and location of the generated

questionnaire. This questionnaire will be used to make a decision for a specific

problem at hand and is based on the reusable architectural decision model.

Double-click on the generated questionnaire to edit the questionnaire with the

corresponding editor. Answering the questionnaire contains clicking on the available

options to the questions and filling-in the required information. Whenever an option

is selected you are guided to the next questions you have to consider for making

your decision, as well as to the follow-on decisions. Decisions and questions that are

grayed-out can not be answered at this stage. The Questionnaire View shows which

options have been decided and which are left open for decision and is synchronized

with the questionnaire. Questions indicated as (M) or (O) are mandatory or optional

respectively. Changing a previous option may lead to invalidated follow-on questions

and options which are recalculated in real-time from the constraints introduced in

the respective architectural decision model (incompatible with, etc.). Questions that

get invalidated by decision changes have to be answered again.

Figure 2-13: Question expecting free-text answer

INDENICA D1.3.2

21

Save/Reset a Questionnaire: To save a questionnaire press on button “Save”, so you

can re-open and re-edit your questionnaire. Press “Reset” to discard all answers and

re-start with the questionnaire.

Fuzzy Logic Support: If a question has been configured to use fuzzy decision support

a button Fuzzy Decision Support will appear next to the question. Press the button to

use the wizard that will guide you through the decision making (see subsec:fuzzds for

more details).

Generate Documentation: Press the “Export” button to generate documentation (in

HTML format) of the made decisions. The exported documentation is based on the

answers that have been given to the questionnaires and the solutions that are

implied by the selected options and can be also edited manually.

2.6.2 FuzzDS

FuzzDS aims to provide semi-automated support for specific recurring ADDs and

resolve their inherent uncertainty. Rather than creating a new design from scratch, it

automates the decision making for design problems that emerge repetitively in a

specific context. Our purpose is to cover the whole design space for a design

situation at hand consisting of generic, as well as technology-specific decisions. To

address uncertainty we use Fuzzy Logic [20], which allows the numerical encoding of

the vague linguistic values software engineers use to describe requirements, as well

Figure 2-14: Example of a questionnaire

INDENICA D1.3.2

22

as forces and consequences of reusable ADDs. Key concepts of Fuzzy Logic are fuzzy

sets and their membership functions, which express degrees of membership

spanned in the interval [0,1] for the elements of the fuzzy sets. The linguistic values

can be interpreted using fuzzy sets which get mapped to overlapping membership

functions (e.g., gaussian, trapetzoidal, etc.). For example, the property performance

could be described as high, medium or low and these linguistic values can be

mapped to overlapping membership functions, as shown in Figure 2-15.

Figure 2-16 presents an overview of our approach, namely the participating tools

and roles. We distinguish between two stakeholder roles: software architect (expert)

and software architect (user). That is, different levels of experience are expected for

architects who create the fuzzy logic models and users of our approach. The

software architects (experts) use the Fuzzy Decisions Models Editor (a textual DSL

editor) to capture architectural knowledge. A decision model contains alternative

design solutions along with their properties and quality attributes and a set of expert

IF–THEN fuzzy rules that guide the design decisions. From these decision models we

derive specialized fuzzy decision models in which domain and technology specific

knowledge can be included. Both kinds of decision models get stored in a Fuzzy

Decision Model Repository for reuse by a Fuzzy Inference System. The software

architects (users) use the Requirements Editor to give the desired requirements in

crisp values using a grading system (e.g., 1–10) for fuzzy input variables like

performance and reliability and binary values (i.e., 0, 1) for variables that

accommodate only two values (e.g., Yes, No) like supports acknowledgment.

The Fuzzy Inference System returns the appropriate design alternatives and their

ranking for the given requirements by combining and evaluating the fuzzy rules

already defined in the fuzzy models. The list of the best-fitting design solutions is

supposed to be used as a decision aid for the software architect who makes the final

decision. After that, the input requirements and the inferred design solutions can be

synthesized to produce ADD Documentations.

Figure 2-15: Gaussian membership functions for 3

linguistic values of property performance

INDENICA D1.3.2

23

For more information about editing and using fuzzy models, as well as the

integration of FuzzDS with ADvISE please refer to the following manual

http://indenica.swa.univie.ac.at/public/advise/FuzzDS.pdf.

2.6.3 AK Transformation Language

The AK Transformation Language works as a bridge between ADvISE for modeling

architectural decisions and supporting architectural decision making and VbMF for

modeling architectural views. It consists of simple and compound transformation

actions that enact on the component views modeled in VbMF in order to add, delete,

modify its components, connectors, properties, etc.

For a complete reference of the AK Transformation Language, usage examples and

its integration with ADvISE please refer to the following manual

http://indenica.swa.univie.ac.at/public/advise/AK Transformation Language.pdf.

Figure 2-16: Fuzzy Logic Based Approach for Supporting Architectural Decision Making

INDENICA D1.3.2

24

3 A Tool-Based Approach to Integrated Variability- and

Architecture-Decision-Making

This section describes the realization of the integration of variability and architecture

decision making, which is now possible through the combination of the ADvISE and

Easy-Producer tool sets. This follows the discussion, which is provided in more detail

in Section Error! Reference source not found.. However, here we describe the

workflow with a focus on tool usage.

The description follows these steps:

1. Model Variability

2. Model Architectural Decisions

3. Define Mapping

4. Resolve Variability

5. Resolve Remaining Architectural Decisions

We also describe the usage of the tool accordingly. However, prior to starting this,

we need to prepare the tool environment. Thus, we assume that the Easy-Producer

tool and the ADvISE tool are installed correctly in the Eclipse environment.

3.1 Model Variability

The first step is to model the variability relevant to our joint example. The simplest

way to do so is to create a corresponding IVML-description. Thus, we create a new

Easy-Producer project (File -> New -> Project... -> EASy-Producer -> New EASy-

Producer Project). We will choose “PL_WMS” as the name of the new project in the

wizard and click the Finish-button. The creation of a new product line project

automatically opens the Product Line Editor. However, this editor does not support

the definition of variability. We will open the IVML Editor instead by double-clicking

the IVML-file, located in the EASy-folder of the PL_WMS-project. We model as

variability the variability of a warehouse management system with four variabilities:8

• PickingRate

• PartialPalletStrategy

• StaplerCraneStrategy

• UIDeviceType

The result is shown in Figure 3-1. In lines 5-8 each variability is defined as an

individual enumeration along with their resolutions in curly brackets. These types are

used to define the variability decisions “VP1” to “VP4” in lines 10-13. The variability

8 Of course, four variabilities is a very small number, this is due to the fact that the example is explicitly artificial

to demonstrate interoperation of ADvISE and Easy-Producer in a nutshall.

INDENICA D1.3.2

25

decisions “VP1”, “VP3”, and “VP4” are supposed to be bound at design-time (lines

15-16), while “VP3”is left open until runtime (lines 17-19). Finally, we save this

definition (Ctrl + S).

Figure 3-1: Textual view of the variability model of the WMS example modeled in EASy-

Producer

The decisions defined in the IVML-file are also shown in the IVML Configuration

Editor-tab of the Product Line Editor to determine a specific configuration in an

interactive manner. We will describe the definition of a configuration in EASy-

Producer in Section 3.4 in detail.

3.2 Model Architectural Decisions

As a next step we model the architectural decisions, relevant to the WMS platform.

First of all, we need to define the design space that provides the basis for making

architectural decisions at the product line and product level. An example of an

architectural decision at product line is the type of Interprocess Communication (IPC)

that will be used (fix or variant). An example of an architectural decision at product

level is the type of IPC software that will be used (open source, medium price, or

very expensive). Given the information about the architectural design alternatives

and their drivers (forces and consequences) we model the reusable architectural

decisions using questions, options and criteria. Please refer to Section 2 for more

details about modelling reusable architectural decisions and to Section 6 for more

examples of architectural decisions at product line level as well as at product level.

In Figure 3-2 the user interface for modelling the architectural decisions using the

ADvISE tooling is shown.

INDENICA D1.3.2

26

Figure 3-2: Reusable Architectural Decision Model

3.3 Define Mapping

The ADvISE tooling provides a launcher for modifying actual architectural decisions

according to constraints introduced by variability decisions.

In order to run the Synchronize Architectural Decisions Launcher the following

arguments are needed:

• EasyProducer PL Project: the project that contains variability decision models

that can affect current architectural decisions

• Mapping File: an XML file that describes which variants are mapped to which

architectural decisions and the kind of the dependency (e.g., enforces) – see

listing of Figure 3-4

• Questionnaire File: ADvISE questionnaire used for architectural decision

making

• Output: output questionnaire file where architectural options may be

invalidated according to the selected variants

INDENICA D1.3.2

27

Figure 3-3: Synchronize Architectural Decisions Launcher

Figure 3-4: Excerpt of the mapping between variability and architectural decisions

3.4 Resolve Variability

The next step after the definition of the mapping between variants and architectural

decisions is to resolve the variability. This is done by assigning values to the

variability decisions defined in Section 3.1. For this purpose, EASy-Producer provides

the interactive IVML Configuration Editor as part of the Product Line Editor (Right-

click on the project -> Edit Product Line -> IVML Configuration Editor). This

interactive view guides the user through the configuration of a specific instance. For

example, in Figure 3-5 the possible values of decision “VP2” are shown in a drop-

down menu limiting the user to select only one of the two (valid) alternatives. Such

selections also change the status of a decision from unassigned to assigned. As the

INDENICA D1.3.2

28

values are taken as defaults, they need to be set as final (freeze) so they have an

effect in an instantiation. (The concept of explicitly freezing decisions is described in

detail in Deliverable D2.1.) Finally, we save the configuration (Ctrl + S).

The configuration given in Figure 3-5 defines the product from a variability

perspective. Based on the connections to the architectural decisions (cf. Section 3.3)

a number of architectural decisions can be automatically derived and further ones

can be constrained.

Figure 3-5: Providing values to the variability decisions of the WMS example

3.5 Resolve Remaining Architectural Decisions

In our running example, the mapping we defined in Figure 3-4 (interdependence

between variability and architectural decisions) and the configuration we made as

shown in Figure 3-5 will result in the deactivation of an architectural option. In

particular, the selection of the variant “PickingRate-medium” will cause the option

“IPC open source” to be deactivated in the related questionnaire. This is shown in

Figure 3-6. At this point, further architectural decisions –related to variability or

not—can be made in order to design the product architecture.

INDENICA D1.3.2

29

Figure 3-6: Architectural Decision Making

3.6 Wrap-Up

As a result of the previous activities, we derived a set of customized architectural

decisions, which correspond to the specific variability as described in the variability

model, introduced in Section 3.1 and the variability resolutions introduced in Section

3.4. Of course, the variability does not completely determine the architecture.

Rather it constrains the range of possible architectural decisions. In the last step, the

remaining open architectural decisions are made (Section 3.5).

INDENICA D1.3.2

30

4 Summary and Conclusion

Customizing service platforms is a complex activity, which either requires significant

understanding by the development personnel of the existing implementation or it

requires support to aid the personnel in making these decisions in an informed way.

In this deliverable, we focussed on the second way: how to support developers in

dealing with the complexity of sophisticated decision making in the context of

developing service platforms. In relation to the previous Deliverable (D1.3.1) we

focused on a somewhat narrower range of decision making, but with a considerably

more ambitious goal: creating a tool environment that supports complex

architectural decision making and is able to support the integration of this

architectural decision making with variability. Both has been developed as part of

this work package, in addition, the integration allows to connect (and exploit) the

results of WP2. The main part of the deliverable is the running prototype; hence we

focused in our description on a description of how to effectively use it.

INDENICA D1.3.2

31

5 References

[1] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural Design

Decisions,” in 5th Working IEEE/IFIP Conf. on Software Architecture (WICSA),

Pittsburgh, PA, USA, 2005, pp. 109–120.

[2] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using Patterns to Capture

Architectural Decisions,” IEEE Software, vol. 24, pp. 38–45, 2007.

[3] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Architecture,”

IEEE Softw., vol. 22, pp. 19–27, 2005.

[4] P. Kruchten, “An Ontology of Architectural Design Decisions,” in Proceedings of

2nd Workshop on Software Variability Management, 2004.

[5] P. Kruchten, R. Capilla, and J. C. Dueñas, “The Decision View’s Role in Software

Architecture Practice,” IEEE Softw., vol. 26, pp. 36–42, Mar. 2009.

[6] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1998.

[7] F. Bachmann, L. Bass, M. Klein, and C. Shelton, “Designing software

architectures to achieve quality attribute requirements,” Software, IEEE Proc.,

vol. 152, pp. 153–165, Aug. 2005.

[8] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster,

“Reusable architectural decision models for enterprise application

development,” in Proceedings of the Quality of software architectures 3rd

international conference on Software architectures, components, and

applications, 2007, pp. 15–32.

[9] O. Zimmermann, J. Grundler, S. Tai, and F. Leymann, “Architectural Decisions

and Patterns for Transactional Workflows in SOA,” in Proceedings of the 5th

international conference on Service-Oriented Computing (ICSOC), 2007, pp. 81–

93.

[10] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combining Pattern

Languages and Reusable Architectural Decision Models into a Comprehensive

and Comprehensible Design Method,” in 7th IEEE/IFIP Conf. on Software

Architecture, 2008, pp. 157–166.

[11] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design decision:

Existing models and tools,” in IEEE/IFIP Conf. on Software

Architecture/European Conference on Software Architecture (WICSA/ECSA),

2009, pp. 293–296.

[12] W. Bu, A. Tang, and J. Han, “An analysis of decision-centric architectural design

approaches,” in Proceedings of the ICSE Workshop on Sharing and Reusing

Architectural Knowledge (SHARK), 2009, pp. 33–40.

[13] A. Peng Jansen Liang and P. Avgeriou, “Knowledge Architect: A Tool Suite for

Managing Software Architecture Knowledge,” 2009.

[14] A. Jansen, J. V. D. Ven, P. Avgeriou, and D. K. Hammer, “Tool Support for

Architectural Decisions,” in Proceedings of the 6th working IEEE/IFIP

Conference on Software Architecture, 2007.

INDENICA D1.3.2

32

[15] R. Capilla, F. Nava, J. Montes, and C. Carrillo, “ADDSS: Architecture Design

Decision Support System Tool,” in ASE, 2008, pp. 487–488.

[16] M. A. Babar and I. Gorton, “A Tool for Managing Software Architecture

Knowledge,” in Proceedings of the Second Workshop on SHAring and Reusing

architectural Knowledge Architecture, Rationale, and Design Intent, 2007, p.

11–.

[17] D. Ameller, O. Collell, and X. Franch, “ArchiTech: Tool support for NFR-guided

architectural decision-making,” in RE, 2012, pp. 315–316.

[18] N. Schuster, O. Zimmermann, and C. Pautasso, “ADkwik: Web 2.0 Collaboration

System for Architectural Decision Engineering,” in SEKE, 2007, pp. 255–260.

[19] A. MacLean, R. Young, V. Bellotti, and T. Moran, “Questions, Options, and

Criteria: Elements of Design Space Analysis,” Human-Computer Interaction, vol.

6, pp. 201–250, 1991.

[20] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

INDENICA D1.3.2

33

6 Appendix: Conceptual Integration of Variability Decision

Making and Architecture Decision Making

This section describes in more detail the background of the integration of ADvISE and

EASy-Producer. Both tools are combined to integrate variability decision making with

architectural decision making.

This paper has been submitted to the Journal of Universal Computer Science (J.UCS),

Special Issue: Software Components, Architectures and Reuse.

So far, we did not receive feedback regarding the acceptance of the paper.

On the Interdependence and Integration

of Variability and Architectural Decisions

Ioanna Lytra, Huy Tran, Uwe Zdun
(Faculty of Computer Science
University of Vienna, Austria

firstname.lastname@univie.ac.at)

Holger Eichelberger, Klaus Schmid
(Software Systems Engineering, Institute of Computer Science

University of Hidelsheim, Germany
lastname@sse.uni-hildesheim.de)

Georg Leyh
(Siemens AG

Erlangen, Germany
georg.leyh@siemens.com)

Abstract: In software product line engineering, the design of assets for reuse and the deriva-
tion of software products involves low-level and high-level decision making. In this process, two
major types of decisions must be addressed: variability decisions, i.e., decisions made as part
of variability management, and architectural decisions, i.e., fundamental decisions to be made
during the design of the architecture of the product line or the products. In practice, variability
decisions often overlap with or influence architectural decisions. For instance, resolving a vari-
ability may enable or prevent some architectural options. This inherent interdependence has not
been explicitly and systematically targeted in the literature, and therefore, is mainly resolved in
an ad hoc and informal manner today. In this paper, we discuss possible ways how variability and
architectural decisions interact as well as their management and integration in a systematic man-
ner. For this, we leverage two existing tools for variability management and architectural decision
support to demonstrate the (semi-)automated integration between the two types of decisions. We
apply and evaluate our approach in a case study from the industry automation area and discuss
the lessons learned.

Key Words: variability decisions, architectural decisions, software product lines, product
derivation

Category: D.2.2, D.2.10, D.2.11

1 Introduction

Variability management and architecture-centric development are fundamental aspects

of software product line engineering [1, 22]. Variability management aims at the ex-

plicit modeling of differences (variabilities) among the products that can be derived

from a product line and, in particular, the interdependencies among individual variabil-

ities. From a variability management perspective, the software architecture of a product

line describes the design of all products in a product line in terms of reusable assets. This

requires, first of all, that commonalities and variabilities among the different products

of a given product line are identified. The aim of Software Product Line Engineering

(SPLE) is to create a single architecture for a range of related products that can be tai-

lored and customized to meet the requirements of the derivable products, for instance,

imposed by different customers. This single architecture is often called the reference

architecture of the product line and may contain variabilities to represent the difference

among the products [22]. Finally, each product has its own architecture derived from

the reference architecture.

From an architectural perspective, variabilities may reflect different architectural

options considered during the design of the product line that are independent of the

products’ features. Bachmann and Bass pointed out two causes of variability in the

software architecture of a product line: (1) product line architectures encompass a col-

lection of different alternatives that must be resolved during product configuration, and

(2) at design time multiple alternatives may exist and need to be captured [2]. Other

approaches consider product line architectures as a set of architectural decisions orga-

nized by the features in a feature model and the product architecture as a subset of the

decisions associated with the chosen product features [29].

Currently in research, variability management and architecture design are mostly

treated as separate activities. For their respective needs, product line and architecture

communities use a variety of methods and tools for modeling, documenting, and mak-

ing specific types of decisions. The product line community has mainly adopted feature

models (e.g., [21]) and decision models (e.g., [36]) to specify variability. The software

architecture community has exploited techniques from variability modeling (e.g., CO-

VAMOF [39]) and used architectural decision modeling (e.g., [20]) to describe vari-

abilities and connect them to quality attributes [44]. Existing variability management

approaches focus on describing variabilities in a product line and managing their im-

pact on the derived products. On the other hand, existing architectural design and de-

cision support tools [37] cover various architectural aspects, views, and reasoning of

decisions but lack adequate support for interaction with variability decisions. To our

best knowledge, the interdependency and integration of variability decisions and ar-

chitectural decisions have neither been studied nor addressed in a systematic way, yet.

This work intends to fill this gap and addresses tool support for the semi-automated

integration of the two types of decisions.

Based on a motivating case, we will discuss the interdependence of variability deci-

sions and architectural decisions in the development of the product line and the derived

products. For modeling product line variability, we opt for using variability decision

models [35, 36]. For assisting and capturing architectural decisions, we use reusable

architectural decision models designed for resolving recurring design issues (such as

[23, 45]). The dependencies in the variability decision model are expressed by con-

straints. By defining a mapping of the variability model onto the architectural decision

model, we explicitly enable the resolution of variability decisions onto the architec-

tural decisions. In our approach, variability and architectural decision options of the

reference architectures of product lines and the products’ architectures are taken into

account. Further, we propose integrated tool support for the management and harmo-

nization of both types of decisions. The integrated tool incorporates and extends the

functionality provided by two existing tools: EASy-Producer1 for variability manage-

ment and ADvISE2 for assisting architectural decision making. We apply our approach

in an industrial case study from the warehouse automation domain and discuss the re-

sults and lessons learned in this context.

The remainder of the paper is structured as follows. In Section 2, we briefly present

the background and terminology for variability decisions and architectural decisions in

product line engineering, as well as the implicit relations of both kinds of decisions doc-

umented in the literature. In Section 3, we introduce an industrial case study and discuss

variability and architectural decision interdependencies in this context. The details of

our proposal and the related prototypical tool support are presented in Section 4 and

Section 5, respectively. We discuss the results of our evaluation in Section 6. In Sec-

tion 7, we compare our approach to related work and, finally, in Section 8 we conclude

and outline future work.

2 Background

In this section, we provide some background definitions that are relevant to this paper.

Based on this we will also provide a basic discussion of the dependencies between

variability decisions and architectural decisions.

2.1 Product Line Engineering

To understand product line engineering it is important to notice a fundamental charac-

teristic: the separation between development at the level of the product line as a whole

and the level of an individual product. This distinction is typically referred to as the

two-lifecycle model [22]. The two lifecycles are usually referred to as domain engi-

neering and application engineering, respectively. However, we will mostly use the

simplifying terms product line level and product level in this paper. At the product line

level, all engineering activities that are relevant to a range of products—the product

line—are performed. The logically first step is to determine what variability needs to

be supported by the product line as a whole. As a basis for this, the scoping activity

identifies which variability should actually be supported in a reusable manner [30, 31].

Together with domain analysis, a precise model of the product line is derived from this.

It should be noted that this excludes product-specific parts from further consideration.

Variability decisions are captured in a variability (decision) model, which represents all

variabilities (differences among the individual products) at an abstract level. Typically,

1 https://www.uni-hildesheim.de/fb4/institute/ifi/
software-systems-engineering-sse/forschung/projekte/easy-producer/

2 http://swa.univie.ac.at/Architectural_Design_Decision_Support_
Framework_(ADvISE)

a variability model includes constraints among the individual variabilities in order to re-

strict the variability space, i.e., to make explicit which instances of the model describe

a valid product. In later stages, the variability model is used to derive a valid product

configuration for instantiation.

The reference architecture defines the realization of the product line, i.e., any deci-

sions made in the reference architecture will be available in all products. The reference

architecture may also contain variability in the sense that some architectural decisions

are not finally taken for the product line as a whole, but several resolutions remain pos-

sible for different variants. Thus, the fundamental potential architectural decisions are

determined at the product line level. Besides, some architectural decisions may also be

introduced as part of product-specific parts of the system.

The development of individual products is commonly referred to as application

engineering. We will use the terminology product level to indicate artifacts that are

specific to products. Specific variants are determined that are in accordance with the

variability model on the product line level. Similar to the product architecture, the cor-

responding architectural decisions that have not yet been defined at the product line

level are made. It may also happen at the product level that product requirements are

not fully covered by the product line. Thus, one of two situations may occur: (a) the ad-

ditional requirements can be covered as product-specific functionality as they interfere

only little with the parts covered by the product line, and (b) there is a strong impact

(e.g., the change relates to some variability, but would require a variability option which

is not available). In the latter case, it is necessary to re-evaluate the existing variability.

This may lead to introducing new variabilities to the variability model; likewise, the

architecture needs to be extended.

2.2 Variability Decisions and Architectural Decisions

When creating variability models or reference architectures, a large number of deci-

sions must be made, such as how to model a certain variability or which design pattern

provides adequate support for particular variabilities. Other decisions are left open to

be determined at product derivation time. We refer to the decisions taken as part of vari-

ability management activities as variability decisions. Further, we will call the decisions

related to the software design of the architectures of the product line and the products

architectural decisions.

Conceptually, variability decisions and architectural decisions may pose distinctive

parts and overlapping parts. Variability decisions are any decisions that describe differ-

ences among different products in a product line and are relevant to reuse (i.e., excluding

product-specific aspects). Typically, variabilities are described in terms of optional (yes-

no), alternative (one-out-of-many), or multiple (many-out-of-many) selections [22]. An

architectural decision is the result of the evaluation of alternative design options in terms

of architectural elements such as patterns, components, or connectors and the selection

of the best-fitting solution. This may happen both at the product line and product level.

At product line level architectural decisions can also be kept open and be postponed to

the product level. These open decisions become variabilities. Architectural decisions at

different levels of granularity are usually taken first in the early stages of design. Later,

throughout the software development process, as well as the maintenance and evolution

of a product line, new architectural decisions may need to be considered and existing

decisions might have to be revised.

2.3 Relation between Variability Decisions and Architectural Decisions

As mentioned above, a variability decision model is often established at the product line

level. This model describes the variability that is relevant to the product line as a whole

and may contain decisions on various levels of abstraction starting from very abstract

domain-related decisions to rather fine-grained technical decisions.

The product line architecture must be designed such that it can cover the desired

variabilities. During this process, various architectural decisions for the design of the

reference architecture must be made. Other architectural decisions can be left open and

resolved later during the derivation of products, i.e., when variabilities are resolved

respectively.

This is not a one-time process, as both engineering activities at the product line

level may provide feedback to requirements engineering or variability management [8].

In particular, the variability that should be supported by the product line needs to be

re-examined whenever new products are developed and may introduce the need for

new variabilities. A variability in a system can be implicit (present at higher levels of

abstraction), designed (explicit) and bound (to a particular variant) [42].

In general, there are two potential options for dealing with such feedback from

later stages to variability modeling: (a) by using a single variability model that captures

variability on all levels in a homogeneous way, and (b) by using a so-called staged con-

figuration approach in which multiple models are used, and information in one model

is used to configure the subsequent level [10]. In practice, especially in commercial

tools, usually an approach with a single central variability model is used to simplify

management and development.

3 Case Study

As a case study for the proposed approach, we leverage a software product line of ware-

house management systems. Based on the product line, custom-made software products

for specific warehouses can be derived. The product line targets automated warehouses

only; that is, goods in a warehouse are moved on pallets by conveyors or stapler cranes.

Usually, a warehouse management system is accompanied by an Enterprise Re-

source Planning (ERP) system that handles all financial aspects of warehouse trans-

actions, and a base automation system that directly controls the conveyors and stapler

cranes of a warehouse. This overall system architecture is typically layered, consisting

of a Resource Planning Layer, a Warehouse Management Layer and a Basic Automa-

tion Layer (see Figure 1).

ERP System

Warehouse Management System

Basic Automation

Figure 1: Layered architecture of a

warehouse management system

Place Order Stock Determination

Picking Packing Shipping

Transport

Figure 2: Goods out process of a

warehouse

The most important business process of a warehouse is “Order Processing” as illus-

trated in Figure 2. The process is triggered when a client orders some goods stored in

the warehouse. Next, the ERP system notifies the warehouse management system about

what shall be delivered (Place Order). The warehouse management system then maps

the orders to boxes of goods that are stored in the warehouse management system (Stock

Determination). Transport orders are sent to the base automation. The base automation

will transport the boxes to a picking station (Transport). There, a human worker picks

up the goods that are specified by the order (Picking). After that, the goods are packed

(Packing) and sent to the customer (Shipping).

3.1 Variability

To create a product line of warehouse management systems, the variability of the do-

main must be managed. A selected set of variabilities that we will use throughout this

paper as running example is summarized in Table 1. One of the variabilities we consider

is the scale of the warehouse that can be ranging from high (e.g., handling thousands of

orders per day), medium (e.g., handling hundreds orders per day), or low (e.g., handling

few dozen orders per day), typical numbers we found in real world warehouses. Another

variability is the strategy for handling partial pallet quantities that considers either speed

or optimal reduction. The high speed strategy tries to only pick from a single box whilst

it may possibly leave a lot of partial pallet quantities while the optimal reduction strat-

egy will remove as much partial pallet quantities as possible (thereby creating space in

the warehouse) which leads to a higher amount of picks. The third variability represents

different strategies for stapler cranes with one or several forks. The forth variability in-

vestigated in this example captures the user interface (UI) options including support for

desktop/laptop computers or mobile devices.

The variabilities are summarized in Table 1. The table gives for each variability

decision a name for the variation point, the possible values and the binding time. The

binding time gives the latest point in the lifecycle when a decision on the variability

must be made. All binding times are related to the product level.

Table 1: Selected Variation Decisions and Their Values in the Warehouse Product Line

ID Variability Decision Possible Values Binding Time

VP1 Picking rate High/Medium/Low Design time
VP2 Partial pallet strategy High speed/Optimal reduction Runtime
VP3 Stapler crane strategy Single fork/Multiple forks Design time
VP4 UI device Computer/Mobile device Design time

3.2 Architectural Decisions

Table 2 depicts an illustrative subset of the design space under consideration that pro-

vides the basis for making architectural decisions at the product line level. Some funda-

mental architectural decisions are taken to form the reference architecture. We elaborate

these decisions along with their corresponding rationales in the context of the afore-

mentioned case study. We prefer an asynchronous call-oriented interaction style to a

message-oriented interaction style because it leads to less complex and more readable

code (cf. AD1); we prefer fix interprocess communication (IPC) to variant IPC because

fix IPC provides higher performance (cf. AD2); and we prefer a service-oriented API

style to resource-oriented API style as the underlying infrastructure functionality is al-

ready provided in terms of services (cf. AD3).

Table 2: Architectural Decisions at Product Line Level

ID Decision Point Options

AD1 Interaction Style
Asynchronous calls interaction
Message-oriented interaction
Synchronous calls interaction

AD2 Interprocess Communication (IPC)
Fix
Variant

AD3 API Style
Service-oriented
Object-oriented
Resource-oriented

The architectural decisions at the product level are shown in Table 3 along with

their variabilities. We note that some of the architectural decisions are influenced by the

variabilities identified previously. For instance, we cannot select a single interprocess

communication solution for AD4 because of VP1. For low picking rate, the option

IPC open source is sufficient, while for medium and high picking rates, the option IPC

very expensive is necessary. This decision brings us to other subsequent architectural

decisions respectively: we create an IPC abstraction interface to localize dependencies

Table 3: Architectural Decisions at Product Level

ID Decision Point Options Variability Decision

AD4 IPC
IPC open source VP1-low
IPC medium price -
IPC very expensive VP1-medium/VP1-high

AD5 IPC invocations
No abstraction interface -
Abstraction interface – facade -
Abstraction interface – gateway -

AD6
IPC open source
adaptation

Adapt IPC open source -
Create a wrapper component -

AD7
IPC very expensive
adaptation

Create a wrapper component -
Other -

AD8 Deployment devices
Single server VP1-low
Multiple servers with round-robin VP1-medium
Multiple servers with load monitoring VP1-high

AD9 Server identification
Business delegate proxy -
Business delegate adapter -

to the changing IPC component in a single component (cf. AD5); we will create a

wrapper component for IPC open source to support VP1 (cf. AD6); or we will create

a wrapper component for IPC very expensive (cf. AD7). Similar to the decision for an

IPC solution, the deployment cannot be decided until VP1 is chosen. A single server is

necessary for low picking rates but multiple servers with a round-robin strategy should

be used with respect to medium picking rates. For high picking rates, multiple servers

with load monitoring are needed. To limit the effect on architecture, we decide to use

the same component structure for all deployment options: always using a client side

business delegate to identify the server, knowing that it is not necessary, and therefore,

costly in single server deployments, to limit the variability of the architecture (cf. AD9).

3.3 Dependencies between Decisions

For application engineering (i.e., at the product level), the decisions AD4 and AD8 are

still open and need to be decided. They are related to and influenced by the variation

point VP1 as following:

– Low picking rate implies IPC open source (AD4) and Single server (AD8)

– Medium picking rate implies IPC very expensive (AD4) and Multiple server with

round-robin (AD8)

– High picking rate implies IPC very expensive (AD4) and Multiple server with load

monitoring (AD8)

We will illustrate the application of our approach in capturing and resolving such

dependencies systematically.

4 Proposed Approach

In this section, we introduce our approach for integrating variability and architectural

decisions in a systematic manner. Our approach is presented in the context of both vari-

ability and architectural decision making processes at product line and product level for

designing reference architectures and product architectures respectively. In particular,

we present various steps of variability management and architectural decision making

and their relationships along with our solutions for eliciting and harmonizing the inter-

dependencies among different kinds of decisions.

4.1 Approach Overview

An overview of our approach is provided in Figure 3. We present the basic steps at

the product line level and the product level for both variability modeling and archi-

tectural decision modeling. The variability model at the product line level is derived

from scoping and subsequent domain analysis. It leads through a manual process of

derivation to a corresponding architectural decision model. We discuss this derivation

process in Section 4.2. As part of variability modeling, dependencies among variabil-

ities are expressed using constraints such as selecting a certain kind of warehouse re-

stricts the range of applicable partial pallet handling strategies. To support the creation

of the reference architecture, architectural decisions for the product line are identified

and documented in the architectural decision model. Our approach formally elicits the

dependencies between the variabilities and architectural decisions in terms of mappings

between the corresponding elements. At product line level, the resulting reference ar-

chitecture will be designed to cover the whole range of variability specified by the

variability decision model by selecting the appropriate architectural solutions from the

architectural decision model.

At the product level, the variabilities of the product are resolved in order to obtain

a valid configuration, i.e., all variability constraints are satisfied by the decisions made.

Using the aforementioned formal mappings as input, we can automatically constraint

the available architectural options that correspond to variability decisions made on prod-

uct level. For example, if a specific variability option is chosen in the configuration, the

resolution of the constraints and the aforementioned predefined mappings ensure that

only architectural options that are associated with that specific variability option can

still be chosen in the architectural decision model. The interdependencies that can be

automatically enforced are discussed in Section 4.3. At this point, further architectural

decisions at product level can be made in order to accomplish the product architecture.

This way, variability and architectural decisions are kept consistent to each other and

the product architecture conforms both to the variability and architectural constraints.

S1. Identify Variants

S3. Model Variability

Decisions

P
ro

d
u

ct
 L

e
v

e
l

S4. Create Architectural

Decision Model

S7. Design Reference

Architecture

S6. Product Line Level

Architectural Decisions

S8. Resolve Variability

Decisions

A
p

p
lica

tio
n

 E
n

g
in

e
e

rin
g

S10. Product Level

Architectural Decisions

S11. Further Product Level

Architectural Decisions

S2. Define Architectural

Decisions Design Space

correspond to

S12. Design Product

Architecture

input for

input for use for

input for

input for

use for

use for

use for

P
ro

d
u

ct
 L

in
e

 L
e

v
e

l
D

o
m

a
in

 E
n

g
in

e
e

rin
g

Variability Management Architectural Decisions

input for

correspond to

S5. Define Mapping

S9. Give Feedback

Figure 3: Approach overview

4.2 Product Line Level

The key idea of our approach is to first determine necessary variability decisions based

on the requirements, as well as possible architectural solutions for implementing the

required variability—and also architectural decisions not related to variability. Then, the

possible variability resolutions (variants) are mapped to the corresponding architectural

options. This is realized in the following steps:

S1. Identify Variabilities: Based on scoping and an analysis of the requirements, we

identify potential variabilities. This is often done by determining main features that

are relevant to specific system instances [31].

S2. Define Architectural Decisions Design Space: We consider existing documented

architectural knowledge, such as the reusable architectural models in [45], in order

to define the architectural decisions design space, i.e., architectural options and

alternatives for the various decisions points related to the design of the reference

architecture and product architectures. This information will be used as input for

creating the architectural decision model.

S3. Model Variability Decisions: The individual variants that vary along an identifi-

able theme can be described as variability decisions. The advantage of having them

as variability decisions—rather than using other variability modeling techniques

such as feature modeling—is mostly to make the inherent dimension of variability

explicit3.

S4. Create Architectural Decision Model: The analysis made in S2 helps us define

the architectural decision model that will be used as guidance for making architec-

tural decisions at product line and product level4.

S5. Define Mapping: The product line architect(s) identify which variability decisions

correspond to architecturally relevant requirements. They determine potential ar-

chitectural decisions that correspond to the individual variants, and make this in-

terdependencies explicit by introducing a mapping between the two models. For

instance, a variability decision may exclude or enforce a related architectural deci-

sion.

S6. Product Line Level Architectural Decisions: The architectural decisions that

will cover the desired variability are derived manually. The aim is to create a

strategy that covers the whole range of variants described by a variability decision,

considering the architectural alternatives and options provided by the architectural

decision model.

S7. Design Reference Architecture: The architectural decisions that are made to

cover the whole range of variants implied in the variability decisions model will be

realized in the reference architecture.

4.3 Product Level

The major goal at the product level is to derive configurations based on the reference

architecture to create particular products. At this level, the architecture of a concrete

product may incorporate additional features apart from the base configuration that are

different from the others. The following steps can be leveraged to accomplish the archi-

tecture of a certain product:

S8. Resolve Variability Decisions: Let us assume that, at the product line level, the

kind of variability decisions and architectural decisions described in the previous

section have been determined. We can distinguish three situations for handling vari-

ability and architectural decisions:

a) The variability identified at the product line level fits to the product level and

we resolve the product line variability while developing the product.

3 Note that we will use a decision-modeling approach [35] as our basis as the tool that we will
discuss later is based on this approach. However, as discussed in [9] decision modeling and
feature modeling are rather similar today and can even be proven to be equivalent for some
cases [17]. Hence, our approach could just as well be applied with feature modeling.

4 Note, that we will apply decision modeling based on Questions, Options and Criteria [25] as
the tool for decision making support that will be used in our approach (ADvISE) is based on
this approach. However, other decision models (such as [45]) can be used in a similar way.

b) The variability determined at the product line level has not yet supported all

product-relevant functionality. However, the additional functionality is only

relevant to a single product.

c) The variability identified in the previous step is insufficient and the needed

variability is important for a range of products. This requires product line evo-

lution [34].

Each situation will trigger the next steps for handling and resolving the variability

and architectural decisions:

S9. Give Feedback and S10. Product Level Architectural Decisions: The first case

S8(a) is rather straightforward. In this case, fitting variability decisions have al-

ready been developed at the product line level. The decisions are taken and re-

lated to corresponding architectural decisions. Thus, selecting the variants imme-

diately constrains the architectural decisions through the mappings achieved in S5.

If the variability decisions are sufficiently fine-grained, then the architectural de-

cisions can be automatically resolved. Otherwise, the architectural decisions are

constrained and the architect performs a tradeoff decision among the remaining

cases.

S11. Further Product Level Architectural Decisions: The second case S8(b) is re-

lated to additional product-specific functionality that needs to be designed. There-

fore, the variability decisions do not provide further orientation as this is outside

the scope of functionality supported by reusable assets and we cannot expect to

make it reusable (hence product-specific). This case is not fundamentally different

from architecting a single-system. The only distinguishing point is that the existing

architectural decisions have to be considered. This can be resolved automatically

as constraints among decision points and architectural options are available in the

architectural decision model. However, due to the similarity to the initial case of ar-

chitecting and because there is no direct relation to variability, we will not discuss

further.

The third case S8(c) denotes that, at the product level, the capabilities provided

by the reusable assets (and hence the variabilities) are insufficient. There are two

possible approaches to handling this circumstance. In the ideal case, we can go

back to the product line level and evolve the product line infrastructure to cover

the special case. This would entail augmenting the variability model providing (if

needed) additional architectural decisions and establishing the relations between

them. As a result, the steps from S3 to S7 are repeated and the variability decision

model, architectural decision model, and their interdependencies are reconsidered.

Afterwards, the rest can be achieved similarly to the first situation. Nevertheless,

sometimes, especially if there is an urgent need for shipping the product, a differ-

ent decision can be made: changes are made at the product level that might raise

inconsistencies at the product line level. In this case, the product line level should

be evolved or adapted at a later point in time. While such an approach can speed

up the development process, it may also expose extra costs through introducing

technical debt, which needs to be addressed at a later point in time [32].

S12. Design Product Architecture: The resulting product architecture will be created

based on both variability decisions and product-related architectural decisions.

5 Tool Support and Case Study Revisited

In this section, we present the main tools that are the basis for our work and demon-

strate their integration in the context of the case study discussed in Section 3. We have

developed an integration of the two tools, which are EASy-Producer (cf. [18])—for

variability management—and ADvISE (cf. [24])—for architectural decision support.

In the subsequent section, we describe the main features of these tools and demonstrate

their integration through the warehouse case study.

5.1 EASy-Producer

The EASy-Producer tool aims at providing modeling and realization support for soft-

ware product lines and software ecosystems [33]. It provides some capabilities that are

standard to all product line engineering tools, like the capability to model variability,

to support the configuration process by determining consistency and consequences of

a partial configuration (e.g., some value may be derived based on constraints and other

given values). In addition, the tool has some capabilities that make it special and par-

ticularly well suited for our case. One is that it provides a very generic approach to

instantiating artifacts. This allows that artifacts can be as diverse as requirements, dif-

ferent forms of code, or, as in our case, architectural information. Another characteristic

is that it has an extremely powerful language for describing variability per se as well

as constraints [16]. The constraint language (actually a variant of the Object Constraint

Language [26]) can also be used to describe implementation related decisions. This

allows to easily describe and manage dependencies between variability decisions and

architectural decisions. The tool also has further characteristics that are related to its

high flexibility and ecosystem support like the ability to support multi-staged deriva-

tion and composition. However, these capabilities are not particularly relevant to our

discussion here, thus, we will not go into more detail on this. A final capability, which

is important in our context, as it helps to support the evolution scenarios, is that EASy-

Producer keeps both the product line infrastructure (the product line level) as well as the

individual products in separate projects. While the tool can help to support consistency

among the two levels, it allows for temporary violations. Thus, we can perform cases,

where we first extend the product level and only later add it to the product line level.

5.2 Architectural Design Decision Support Framework

The Architectural Design Decision Support Framework (ADvISE) is an Eclipse-based

tool that supports the modeling of reusable architectural decisions using Questions, Op-

tions and Criteria (QOC) [25] for systematizing the design space and providing decision

support. In particular, it assists the architectural decision making process by introducing

for a group of design issues a set of questions along with potential options, answers and

related (often design pattern based) solutions, as well as dependencies and constraints

between them. ADvISE has been developed with focus on reusable architectural knowl-

edge that can be also transformed into reusable architecture designs (cf. [24]) rather

than on product lines. However, it is generic enough to support both product line as

well as product related architectural decision making. The advantage of the reusable

architectural decision models is that the models need to be created only once for a re-

curring design situation. In similar application contexts, corresponding questionnaires

can be automatically instantiated and used for making concrete decisions, from which

architectural decision documentations are generated. In our work, we integrate archi-

tectural decisions of the architectural decision models with variability decisions of the

variability decision models by introducing mappings between the corresponding archi-

tectural options and variabilities.

5.3 Decision Integration Tool Support

As discussed in Section 4, the first step in the tool support (cf. S3) is to represent the

variability outlined in Table 1 (cf. S1) in the form of an EASy-Producer decision model.

The EASy-Producer tool supports two representations for variability models: an inter-

active view, where a configuration of the variability can be determined in an interactive

manner (see Figure 4(a)) and a textual view where the variability can be described in a

programmatic manner (see Figure 4(b)). In our example, four types of variability deci-

sions are defined including “PickingRateType”, “PartialPalletStrategyType”,

“StaplerCraneStrategyType”, and “UIDeviceType” along with their resolutions

in the lines 5–8. These types are used to define the variability decisions “VP1” to “VP4”

according to Table 1. The variability decisions “VP1”, “VP3”, and “VP4” are supposed

to be bound at build time (lines 15–16) while “VP2” is left open until runtime (lines

17–19).

Afterwards, we model the architectural decisions summarized in the Table 2 and 3

(cf. S2) using ADvISE (cf. S4). The architectural decisions editor allows us to edit for

each decision point a list of questions, and for each question a number of options which

may be mapped to specific solutions and can be related to follow-on decisions and

questions or constrained by other architectural options. In Figure 5, we give an example

of the product-level architectural decision AD4 of Table 3 that defines the types of IPC

that can be used in the warehouse product. While Figure 5(a) gives general information

about the underlying architectural decision, we can see the alternative options related to

(a) Interactive view of the WMS example

(b) Textual view of the WMS example

Figure 4: Variability model of the WMS example modeled in EASy-Producer

a specific question in the detailed view of Figure 5(b). In this example, the alternative

options “IPC open source”, “IPC medium price”, and “IPC very expensive”

are provided for the question “IPC type of software”.

The next step of our approach (cf. S5) requires that we define the mapping be-

tween the variability and architectural decisions. For this purpose, we establish a set

of mappings from the variability decision model onto the corresponding architectural

decision model for the different variabilities in XML format. In particular, for each vari-

ability decision, relations of specific type (e.g., excludes, enforces, etc.) can be speci-

fied onto an architectural option. In Listing 1, the variability decision “PickingRate-

Type.medium” is mapped to the architectural option “IPC open source” of the ar-

chitectural decision AD4 with type of relation “excludes”. It means that selecting the

medium picking rate will result in the rejection of IPC open source.

(a) Architectural decisions

(b) Options related to a question

Figure 5: ADvISE architectural decisions model editor

<mappings >
<aModel >ADModelIndenica </aModel >
<vModel >PL_WMS </vModel >
<vp name="VP1">

<relation type="excludes">
<vd id="PickingRateType.medium"/>
<add id="AD4.IPC type of software.IPC open source"/>

</relation >
</vp>
...

</mappings >

Listing 1: Excerpt of the mappings between variability and architectural decisions

After designing the reference architecture to cover the whole range of variability

(cf. S6-S7), it is now time to apply it to the problem of creating the product architec-

ture. In step S8 we resolve the variability decisions by assigning values to the variability

decisions. This is shown in Figure 6, where the lines 6–10 contain the decisions made

for each variation point at design time. For instance, in our running example, the value

“PickingRate.medium” was selected for “VP1”. In the EASy-Producer tool the con-

figuration is typically provided as a second file, referencing the definition file.

The case above actually corresponds only to step S8(a), thus the configuration is

straightforward. If we have the case of S8(b) or S8(c), then the situation becomes more

complex. An example of S8(b) would be that our customer requires an integration to a

specialized ERP system, while the product line typically only supports SAP-integration.

Then, a typical approach would be to introduce an extension point and a connector to

this specialized ERP-system. This would not necessarily be visible in the variability

model or it would be simply modeled as an option to activate the extension point. An

example for S8 would be that a new customer would like to have a Partial Pallet Strat-

egy, which is not yet supported, like max two, i.e., at most two pallets may be opened

for one type of article. If we would like to support this in the future we would extend

the “PartialPalletStrategyType” to include the “maxTwo” option.

The configuration given in Figure 6 defines the product from a variability perspec-

tive. Based on the connections to the architectural decisions a number of architectural

decisions can be automatically derived and further ones can be constrained. In our ex-

ample, the mapping we defined in Listing 1 will enable us to reflect variability decisions

on the architectural decision model at the product level design (cf. S9-S10). To support

architectural decision making, ADvISE tooling provides automatically generated ques-

tionnaires from the architectural decision models for guiding software architects. In

Figure 7, the selection of the variant “PickingRate-medium” will cause the option

“IPC open source” in the related ADvISE questionnaire to be deactivated. At this

point, further architectural decisions, related to variability or not, can be made in order

to design the product architecture (cf. S11-S12).

Figure 6: Providing values to the variability decisions in the WMS example

(a) Questionnaire excerpt for product level architectural decisions

(b) Architectural option deactivated due to variability decision

Figure 7: Architectural decision making

6 Discussion and Limitations

Through our study, we have observed that in many cases, interdependencies between

variability and architectural decisions exist but are kept implicit and get resolved, in

practice, in an informal way. Very often, these decisions are made by different stake-

holders and with different tool support and their overlaps and inconsistencies are often

resolved in an ad hoc and manual manner. We showed that formally eliciting the inter-

dependencies requires additional efforts at the beginning but it leads to better automated

support in integrating and harmonizing variability management and architectural deci-

sion making in the long run.

This way, we capture and formalize the links between variabilities and architectural

options at the product line level, such that the architectural decision making process

is (semi-)automated and connected with the variability decision making process. As a

result, architectural decisions can be changed or adapted whenever the variability is

resolved and specific variants are selected.

The variability can be resolved at different binding times, and therefore, the ar-

chitectural decisions can also be constrained at different stages respectively. The huge

advantage of our approach is that variability and architectural decisions shall remain

consistent at product derivation. Moreover, the introduction of mappings between the

two kinds of decisions can significantly enrich the documentation of the design ratio-

nale. For instance, the rejection or selection of an architectural option can be justified

by following the dependencies with the corresponding variability decisions. This would

help enduring the life time of the architectural design decisions, and therefore, making

the decisions more sustainable.

Although we have used two existing tools for demonstrating our approach and im-

plementation we claim that our proposal is to a large extent generalizable. For the vari-

ability management, feature modeling can be used alternatively to the decision mod-

eling approach applied in EASy-Producer; for architectural decision support, other ar-

chitectural decision models or ontologies would also be applicable in our proposal. In

this case, some effort for synchronizing the architectural decisions with the variability

decisions automatically from the predefined mappings would be required.

In our approach, we assume that the variability decisions guide the architectural

decisions for the product line and product design. In practice, an architectural decision

may also influence a variability decision. For instance, a decision to use a low-cost

software solution because of cost constraints may cause some variabilities to be invalid.

However, that would mean that the variability needs to be reconsidered and possibly

redesigned (i.e., repeat steps S3 to S7 in Figure 3).

We discussed the interaction of variability and architectural decisions with the focus

on product line design and product derivation and have not investigated the evolution

and maintenance of product lines and products. As architectural decisions contain also

interdependencies, reconsidering a variability decision may cause inconsistencies to

existing architectural decisions. It is challenging to be able to handle this situation and

also predict the impact variability decisions will have on the product architecture, but

we plan to address this in our future work.

Another limitation of our approach is that the evidence of variability and architec-

tural decision interdependence is discussed in the context of one case study. As dis-

cussed in Section 2 this interdependence is implicit but no such examples have been

documented in the literature. The elaboration of more industrial case studies and inter-

views with practitioners would allow us to discover more types of interdependencies,

extend our approach and evaluate it in different contexts.

7 Related Work

7.1 Architectural Decisions in Variability Management Approaches

Variability and architectural decisions have been studied often in the literature in the

same context. Variability decisions mainly refer to decisions related to the differences

among the products that derive from a product line. The variabilities described as op-

tional, alternative or multiple selections [22] are often related to architectural elements.

For instance, the Feature-Oriented Domain Analysis (FODA) [3, 21] usually mixes

architecture-related decisions with domain properties and system configurations. Fea-

ture models mainly describe the solution space (i.e., focuses on modeling of commonal-

ities and variabilities) and do not provide any guidance for selecting between alternative

variants and reasoning about them. However, many approaches in the literature propose

to enrich variability management with design rationale and decision support by intro-

ducing decision models [14, 35, 36] for describing variabilities. In some cases these

variability decision models are designed to be reusable [30, 31]. In an approach that

combines both methods, Perovich et al. [27] consider product line architectures as a set

of architectural decisions and use feature models to represent the decisions associated

to the product features and transformation models to transform decisions into product

architectures. The aforementioned approaches mainly focus on variability decisions and

handle architectural decisions also as variability decisions without setting any boundary

between the two. The different nature of the two types of decisions is not studied in any

of these works.

7.2 Variability Decisions in Architectural Decision Making Approaches

Many approaches in the literature deal with modeling of reusable architectural deci-

sions [45] or provide tool support for architectural decision making [38]. Unlike de-

cision models for product lines that describe a set of variabilities relevant to product

derivation, architectural decision models focus mainly on architecture-related options

and alternatives for designing a software architecture. Many approaches in the literature

suggest to integrate variability management with architectural knowledge and design

rationale. For instance, Dhungana et al. suggest to capture variabilities in variability

management as decisions and establish relationships between assets, such as compo-

nents and decisions explicitly [13]. Also, Capilla and Babar suggest to integrate ar-

chitectural decision models with variability models to support ADDs for product line

architectures [7]. For this, they map design decisions to variabilities and binding times

to document reasoning about decisions related to product lines. In a different approach,

Burge et al. capture rationale for decisions required for a product configuration in a

product line by associating design criteria with decision alternatives [6]. They generate

an hierarchy of decisions needed to be made for designing a product architecture from

feature models, thus assisting decision making and documentation. Sinnema et al. inte-

grate a variability management framework (COVAMOF) with concepts of architectural

decision models, thus making the effects of different alternatives on the quality of a sys-

tem explicit [39]. A number of approaches in software product line engineering focus

on documenting architectural design decisions and their rationale [7]. Unlike variability

management approaches based on feature models [21] or decision models [36], these

approaches propose to view architectural design decisions in modeling and managing of

product line variability models as first class citizens. For this, they distinguish between

variations considered at product configuration and architectural decisions made at early

stages of the design phase. Also, the work in [41] suggests the reuse of design decisions

to customize a product line using composition techniques as a step-wise refinement for

product derivation. As before, these approaches consider the design of product line and

product architectures as an architectural decision making process and do not distinguish

it from variability management. None of these approaches studies, elicits, and resolves

the interdependence between variability and architectural decisions.

7.3 Variability in the Architecture Design

Some researchers have proposed the characterization of variability decisions according

to the stage they are resolved. For example, Rosenmüller et al. apply multi-dimensional

separation of concerns in variability modeling, that is, they create different variabil-

ity models for different stakeholder concerns, e.g., for non-functional properties, such

as security and quality of service, for runtime contexts, etc., and use generalization

and specialization mechanisms to model extension, composition and configuration of

the variability dimensions [28]. Bidian et al. introduce variability decision boundaries

at the different stages of requirements definition, architecture and detailed design and

runtime which define at which stage the decisions have to be resolved [4]. In both ap-

proaches, variability and architectural decisions are considered to have overlaps and

interrelationships. Some approaches set the focus of the variability modeling on the ar-

chitectural level. For instance, the architectural description language xADL [11] allows

the modeling of versions, options and variants in product line architectures. Thiel and

Hein integrate variability with product line architecture design. For this, they introduce

variabilities in architectural views and connect them to feature variability [40]. The aim

of these approaches is to reflect variability on the architecture design. In a different ap-

proach [15], the architectural knowledge behind variability, i.e., the variability design

rationale is captured in models. Diaz et al. propose to combine two metamodels, one for

defining external and internal variability and one for documenting architectural knowl-

edge and variability design rationale. They also do not distinguish between variability

and architectural decisions as architectural decisions are implicit in the derived product

line and product architectures.

7.4 Integration of Other Design Artifacts

Apart from the linking between variability and architectural decisions and architec-

ture design, the systematic integration and mapping between other artifacts of the soft-

ware design have been studied extensively in the literature. For instance, the rela-

tion and interaction between requirements and architecture design [19, 43] and the

explicit mapping and integration between architectural decisions and software archi-

tectures [12, 24]. Buhne et al. introduce links between variability information and re-

quirements artifacts to support consistency checking of variability definitions among

different product line sets [5]. Also, Durdik et al. study the effects of design decisions

on requirements, for example, the prioritization of requirements or the consideration of

additional requirements at design space exploration [46]. One of the main aims of the

aforementioned approaches is to document the rationale and check the consistency of

evolving artifacts that contain interdependencies, which is also the main concept in our

approach. However, our approach is the first proposal for investigating and supporting

the interaction between variability and architectural decisions systematically.

8 Conclusions

In this paper, we studied the interdependence of variability and architectural decisions

that need to be resolved during product line and product design. Although variability

decisions constraint and influence architectural decisions in practice, this inherent in-

terdependence has not been studied or addressed systematically in the literature yet. We

propose to make the interdependence of variability management and architectural de-

cision making explicit. For this, we propose a novel approach for managing variability

and architectural decisions in an integrated manner. To ensure that variability and archi-

tectural decisions remain consistent to each other we introduce at the product line level

mappings between them, which are afterwards leveraged at the product derivation, i.e.,

resolution of variability decisions, to give feedback—mainly introduce constraints—to

the architectural decisions. We demonstrated our approach by integrating two existing

tools for modeling and realization support for software product lines (EASy-Producer)

and for architectural decision modeling and making support (ADvISE).

In the context of a case study from the warehouse automation area we documented

variability and architectural decisions and their interdependencies and demonstrated

our approach using the aforementioned tools and their integration. Our contributions

can be summarized in the following: 1) we propose a novel approach for bridging the

gap between variability management and architectural decision making in product line

engineering, 2) we make the interdependencies between variability and architectural

decisions explicit, and 3) we ensure that variability and architectural decisions are con-

sistent to each other at product derivation. These aspects are important not only when

creating reference architectures and derive products but also when a product line or

product architecture needs to be maintained. We consider the second to be an open

challenge and plan in the future to study different forms of integrating both kinds of

decisions and the impact of changing these decisions during product line and product

evolution.

Acknowledgement

This work was partially supported by the European Union FP7 project INDENICA

(http://www.indenica.eu), grant no. 257483.

References

[1] BABAR, M. A., CHEN, L. C. L., AND SHULL, F. Managing Variability in Software Prod-
uct Lines. IEEE Software 27, 3 (2010), 89–91, 94.

[2] BACHMANN, F., AND BASS, L. Managing Variability in Software Architectures. In
2001 Symposium on Software Reusability: Putting Software Reuse in Context (SSR) (2001),
ACM, pp. 126–132.

[3] BENAVIDES, D., SEGURA, S., AND CORTÉS, A. R. Automated Analysis of Feature Mod-
els 20 Years Later: A Literature Review. Inf. Syst. 35, 6 (2010), 615–636.

[4] BIDIAN, C., AND YU, E. S. K. Towards Variability Design as Decision Boundary Place-
ment. In 10th Workshop on Requirements Engineering (WER) (2007), pp. 139–148.

[5] BÜHNE, S., LAUENROTH, K., AND POHL, K. Modelling Requirements Variability across
Product Lines. In Proceedings of the 13th IEEE International Conference on Requirements
Engineering (2005), IEEE, pp. 41–52.

[6] BURGE, J. E., GANNOD, G. C., AND CONNOR, H. L. Using Rationale to Drive Product
Line Architecture Configuration. In 6th Int’l Workshop on SHAring and Reusing Architec-
tural Knowledge (SHARK) (2011), ACM, pp. 29–36.

[7] CAPILLA, R., AND ALI BABAR, M. On the Role of Architectural Design Decisions
in Software Product Line Engineering. In 2nd European Conf. on Software Architecture
(ECSA) (2008), Springer, pp. 241–255.

[8] CLEMENTS, P., AND NORTHROP, L. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, 2002.

[9] CZARNECKI, K., GRÜNBACHER, P., RABISER, R., SCHMID, K., AND WASOWSKI, A.
Cool Features and Tough Decisions: A Comparison of Variability Modeling Approaches. In
6th Int’l Workshop on Variability Modelling of Software-Intensive Systems (VaMoS) (2012),
ACM, pp. 173–182.

[10] CZARNECKI, K., HELSEN, S., AND EISENECKER, U. Staged Configuration Through Spe-
cialization and Multi-Level Configuration of Feature Models. Software Process Improve-
ment and Practice 10, 2 (2005), 143–169.

[11] DASHOFY, E. M., VAN DER HOEK, A., AND TAYLOR, R. N. An Infrastructure for the
Rapid Development of XML-based Architecture Description Languages. In 24th Int’l Conf.
on Software Engineering (ICSE) (2002), ACM, pp. 266–276.

[12] DERMEVAL, D., PIMENTEL, J., SILVA, C. T. L. L., CASTRO, J., SANTOS, E., GUEDES,
G., LUCENA, M., AND FINKELSTEIN, A. STREAM-ADD - Supporting the Documenta-
tion of Architectural Design Decisions in an Architecture Derivation Process. In 36th An-
nual IEEE Computer Software and Applications Conf. (COMPSAC), Izmir, Turkey (2012),
IEEE, pp. 602–611.

[13] DHUNGANA, D., GRÜNBACHER, P., AND RABISER, R. DecisionKing: A Flexible and
Extensible Tool for Integrated Variability Modeling. In 1st Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS) (2007), pp. 119–128.

[14] DHUNGANA, D., GRÜNBACHER, P., AND RABISER, R. The DOPLER meta-tool for
decision-oriented variability modeling: a multiple case study. Automated Software Engi-
neering 18, 1 (Mar. 2011), 77–114.

[15] D ÍAZ, J., PÉREZ, J., GARBAJOSA, J., AND WOLF, A. L. A Process for Documenting
Variability Design Rationale of Flexible and Adaptive PLAs. In Confederated Int’l Conf.
on On The Move to Meaningful Internet Systems (OTM) (2011), Springer, pp. 612–621.

[16] EICHELBERGER, H., AND SCHMID, K. A Systematic Analysis of Textual Variability Mod-
eling Languages. In Int’l Software Product Line Conference(SPLC’13) (2013). (accepted).

[17] EL-SHARKAWY, S., DEDERICHS, S., AND SCHMID, K. From Feature Models to Decision
Models and Back Again: An Analysis Based on Formal Transformations. In 16th Int’l
Software Product Line Conference (SPLC’12) (2012), ACM, pp. 126–135.

[18] EL-SHARKAWY, S., KRÖHER, C., AND SCHMID, K. Supporting Heterogeneous Com-
positional Multi Software Product Lines. In Joint Workshop of the 3rd Int’l Workshop on
Model-driven Approaches in Software Product Line Engineering and the 3rd Workshop on
Scalable Modeling Techniques for Software Product Lines (MAPLE/SCALE 2011) at the
15th Int’l Software Product Line Conference (SPLC ’11) (2011), ACM.

[19] GRÜNBACHER, P., EGYED, A., AND MEDVIDOVIC, N. Reconciling Software Require-
ments and Architectures with Intermediate Models. Softw. Syst. Model. 3, 3 (2003), 235–
253.

[20] JANSEN, A., AND BOSCH, J. Software Architecture as a Set of Architectural Design
Decisions. In The 5th Working IEEE/IFIP Conf. on Software Architecture (2005), IEEE,
pp. 109–120.

[21] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON, A. S.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep., Carnegie-Mellon
University Software Engineering Institute, November 1990.

[22] LINDEN, F., SCHMID, K., AND ROMMES, E. Software Product Lines in Action - The Best
Industrial Practice in Product Line Engineering. Springer, 2007.

[23] LYTRA, I., SOBERNIG, S., AND ZDUN, U. Architectural Decision Making for Service-
Based Platform Integration: A Qualitative Multi-Method Study. In Joint 10th Working
IEEE/IFIP Conf. on Software Architecture & 6th European Conf. on Software Architecture
(WICSA/ECSA), Helsinki, Finland (2012), IEEE.

[24] LYTRA, I., TRAN, H., AND ZDUN, U. Supporting consistency between architectural
design decisions and component models through reusable architectural knowledge trans-
formations. In European Conference on Software Architecture (ECSA) (2013), Springer,
pp. 224–239.

[25] MACLEAN, A., YOUNG, R., BELLOTTI, V., AND MORAN, T. Questions, Options, and
Criteria: Elements of Design Space Analysis. Human-Computer Interaction 6 (1991), 201–
250.

[26] OBJECT MANAGEMENT GROUP, INC. (OMG). Object Constraint Language. Specification
v2.00 2006-05-01, Object Management Group, 2006. http://www.omg.org/spec/OCL/2.0/
[validated: June 2013].

[27] PEROVICH, D., ROSSEL, P. O., AND BASTARRICA, M. C. Feature Model to Product
Architectures: Applying MDE to Software Product Lines. In 2009 Joint Working IEEE/I-
FIP Conference on Software Architecture European Conference on Software Architecture
(2009), vol. 11, IEEE, pp. 201–210.

[28] ROSENMÜLLER, M., SIEGMUND, N., THÜM, T., AND SAAKE, G. Multi-dimensional
Variability Modeling. In 5th Workshop on Variability Modeling of Software-Intensive Sys-
tems (VaMoS) (2011), ACM, pp. 11–20.

[29] ROSSEL, P. O., PEROVICH, D., AND BASTARRICA, M. C. Reuse of Architectural Knowl-
edge in SPL Development. In 11th Int’l Conference on Software Reuse: Formal Founda-
tions of Reuse and Domain Engineering (ICSR) (2009), S. Edwards and G. Kulczycki, Eds.,
Springer, pp. 191–200.

[30] SCHMID, K. Scoping Software Product Lines — An Analysis of an Emerging Technology.
In Software Product Lines: Experience and Research Directions; Proceedings of the First
Software Product Line Conference (SPLC1) (2000), P. Donohoe, Ed., Kluwer Academic
Publishers, pp. 513–532.

[31] SCHMID, K. A Comprehensive Product Line Scoping Approach and its Validation. In Int’l
Conf. on Software Engineering (ICSE’24) (2002), ACM, pp. 593–603.

[32] SCHMID, K. A Formal Approach to Technical Debt Decision Making. In 9th Int’l ACM
SIGSOFT Conf. on Quality of Software Architectures (2013), ACM, pp. 153–162.

[33] SCHMID, K., AND DE ALMEIDA, E. S. Product Line Engineering. IEEE Software (2013).
To appear.

[34] SCHMID, K., AND EICHELBERGER, H. A Requirements-Based Taxonomy of Software
Product Line Evolution. Electronic Communications of the EASST 8 (2008).

[35] SCHMID, K., AND JOHN, I. A customizable approach to full lifecycle variability manage-
ment. Sci. Comput. Program. 53, 3 (Dec. 2004), 259–284.

[36] SCHMID, K., RABISER, R., AND GRÜNBACHER, P. A Comparison of Decision Modeling
Approaches in Product Lines. In 5th Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS) (2011), ACM, pp. 119–126.

[37] SHAHIN, M., LIANG, P., AND KHAYYAMBASHI, M. R. Architectural Design Decision:
Existing Models and Tools. In Joint Working IEEE/IFIP Conf. on Software Architecture and
European Conf. on Software Architecture (WICSA/ECSA), Cambridge, UK (2009), IEEE,
pp. 293–296.

[38] SHAHIN, M., LIANG, P., AND KHAYYAMBASHI, M. R. Architectural design decision:
Existing models and tools. In Joint Working IEEE/IFIP Conf. on Software Architecture and
European Conf. on Software Architecture (WICSA/ECSA) (2009), IEEE, pp. 293–296.

[39] SINNEMA, M., VAN DER VEN, J., AND DEELSTRA, S. Using Variability Modeling Prin-
ciples to Capture Architectural Knowledge. Quality 31, 5 (2006), 5.

[40] THIEL, S., AND HEIN, A. Systematic Integration of Variability into Product Line Archi-
tecture Design. In 2nd Int’l Conf. on Software Product Lines (SPLC) (2002), Springer,
pp. 130–153.

[41] TRUJILLO, S., AZANZA, M., DIAZ, O., AND CAPILLA, R. Exploring Extensibility of
Architectural Design Decisions. In 2nd Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent (SHARK-ADI) (2007), IEEE, p. 10.

[42] VAN GURP, J., BOSCH, J., AND SVAHNBERG, M. On the Notion of Variability in Software
Product Lines. In Working IEEE/IFIP Conf. on Software Architecture (WICSA) (2001),
IEEE, pp. 45–54.

[43] VAN LAMSWEERDE, A. From System Goals to Software Architecture. In School on Formal
Methods (2003), M. Bernardo and P. Inverardi, Eds., vol. LNCS 2804, Springer, pp. 25–43.

[44] ZDUN, U. Systematic Pattern Selection Using Pattern Language Grammars and Design
Space Analysis. Software Practice & Experience 37 (July 2007), 983–1016.

[45] ZIMMERMANN, O., GSCHWIND, T., KÜSTER, J., LEYMANN, F., AND SCHUSTER, N.
Reusable Architectural Decision Models for Enterprise Application Development. In
3rd Int’l Conf. on Quality of Software Architectures (QoSA), Medford, MA, USA (2007),
Springer, pp. 15–32.

[46] ZOYA DURDIK, A. K., AND REUSSNER, R. How the Understanding of the Effects of
Design Decisions Informs Requirements Engineering. In Second Int’l Workshop on the
Twin Peaks of Requirements and Architecture (TwinPeaks) (2013).

