
Engineering Virtual Domain-Specific
Service Platforms

Specific Targeted Research Project: FP7-ICT-2009-5 / 257483

Abstract

This document presents the methodologies, languages, and tools proposed in INDEN-
ICA for the holistic elicitation of requirements. The document is split into four parts:
Part 1 is an introduction, Part 2explains the Requirement Engineering process derived
from Product Line Engineering and transferred to Platform as a Service, Part 3 con-
sists of two INDENICA specific adaptations: IRENE, the goal-based solution for stating
the actual requirements of the service platform and the User Centered Requirements
Engineering Approach, Part 4 provides the tool support for both methods presented
in part 3 (IRET and a prioritization tool).

Document ID: INDENICA – D1.2.2
Deliverable Number: D1.2.2
Work Package: 1
Type: Deliverable
Dissemination Level: Public
Status: Final
Version: 1.0
Date: 2012-10-01
Contributing Partners: SAP, SIE and PDM

Requirements Engineering
Framework, Language and Tools

for Service Platforms

INDENICA D1.2.2

 2

Version History
0.1 12 September 2012 Initial version

0.2 20 September 2012 PDM contribution added

0.3 27 September 2012 SAP contribution added

04. 30 September 2012 Revised version

1.0 1 October 2012 Final version

Document Properties
The spell checking language for this document is set to UK English.

Table of Contents

1 Introduction .. 6

2 RE Process and Methods for Platforms as a Service ... 7

2.1 RE for Domain Engineering ... 8

2.1.1 Requirements Management ... 8

2.1.2 Requirements Development .. 9

2.2 RE for Application Engineering .. 21

2.2.1 Requirements Management ... 21

2.2.2 Requirements Development .. 22

2.3 Relation to Agile Methodologies ... 23

2.4 Application of process on virtual service platforms 27

2.5 ROI Calculation ... 28

3 INDENICA specific notations .. 35

3.1 IRENE .. 35

3.2 Views .. 35

3.3 Variability support .. 36

3.4 Model integration ... 37

3.4.1 Semantic similarity ... 38

3.4.2 Requirements matching ... 39

3.5 User Centered Requirements Engineering .. 40

3.5.1 Motivation: Summary of work presented in D1.2.1 40

3.5.2 Graphical display of Priorities ... 40

3.5.3 Analysis of Conflicting Sets of Prioritization .. 41

4 Tools .. 44

4.1 IRET .. 44

4.1.1 Improvements on Attributes, Events and Entities 45

4.1.2 Views ... 46

4.1.3 Merge .. 49

4.1.4 Other improvements .. 55

4.1.5 Integration with other tools ... 56

4.2 Prioritization Tool Support .. 59

4.2.1 Goal Extractor .. 59

INDENICA D1.2.2

 4

4.2.2 Prioritization Analyzer .. 60

5 Conclusions ... 65

6 References ... 66

Appendix ... 69

INDENICA D1.2.2

 5

List of Acronyms

AE
Application Engineering

DE
Domain Engineering

EMF
Eclipse Modelling Framework

GMF
Graphical Modelling Framework

IRENE
INDENICA Requirements ElicitatioN mEthod

IRET
IREne Toolset

LTL
Linear Temporal Logic

PaaS
Platform as a Service

PLE
Product Line Engineering

RE
Requirements Engineering

PO
Product Owner

ROI
Return On Invest

INDENICA D1.2.2

 6

1 Introduction

This document is the continuation of D1.2.1 and presents the work done over the
last year on the methodologies, languages, and tools proposed in INDENICA for the
holistic elicitation of requirements. The document discusses the RE process and
methods for PaaS, the INDENICA specific methods like ROI calculation, IRENE, and
UCRE (user-centric RE), and the tool support.

Besides the work already presented in the first deliverable, the document concen-
trates on the following aspects:

A more comprehensive requirements elicitation process and methods for plat-
forms as a service, with emphasis on both domain and application engineering;

The introduction and analysis of agile methodologies and of User Story Mapping
(USM) in particular;

An improved and complete solution for ROI calculation, as means to estimate the
costs associated with this kind of solutions and decide about the feasiblity of the
project;

The new features introduced in IRENE to consider service platforms explicitly:
views, view merging, variability modelling, semantic similarity, and matching;

The methodology defined for integrating the different priorities set by the stake-
holders involved in the elicitation process.

The new version(s) of IRET, which is the IRENE supporting tool, to let the user try
and exploit the new features of the language, and also to ameliorate some of the
existing capabilities;

The new tool developed to work on conflicting priorities and set them univocally.

The rest of the document is organized as follows. Section 2 presents the require-
ments elicitation process and methods for platforms as a service. Section 3 describes
the novelties proposed by IRENE. Section 4 summarises the novelties in IRET and
presents the new tool for working on conflicting priorities. Section 5 concludes the
document.

INDENICA D1.2.2

 7

2 RE Process and Methods for Platforms as a Service

As described in [SotA], the main characteristics for Product Line Engineering (PLE)
consist in:

The existence of two different development processes:
o Domain Engineering (DE):

The process of software product line engineering, in which the common-
ality and the variability of the product line are defined and realized.

o Application Engineering (AE):
The process of software product line engineering, in which the applica-
tions of the product line are built by reusing domain artefacts and exploit-
ing the product line variability

Variability as a core concept for PLE
A platform for the product line
A reference architecture

One main principle of PLE is building a platform. Figure 1 shows the position of Re-
quirements Development within a complete PLE process. We take here the approach
to identify methods of Requirements Engineering suitable for PLE and also for the
development of a INDENICA virtual service platform.

Figure 1: Requirements Development in Domain and Application Engineering.

For all following considerations regarding “Requirements Development in the con-
text of PLE” we define the workflow in Figure 2 as basis for the process:

INDENICA D1.2.2

 8

Figure 2: Requirements Development as process basis for PLE.

In the following sections the RE process for product lines is described in more detail,
with challenges for RE arising from product line context.

2.1 RE for Domain Engineering
Domain Engineering is a specific discipline necessary when developing product lines.
In the INDENICA context this discipline will be used to design the virtual service plat-
form. The domain engineering process deals with the development of all parts of the
product line that are common to all applications of the product line or a specific
number of diverse applications of the product line. This has effects on different steps
of the requirements engineering process.

2.1.1 Requirements Management
In general, the major task of Requirements Management is to manage all kinds of
traceability (Figure 3):

Tracing requirements back to their origin (1)
Managing cross-references between requirements (2)
Tracing requirements forward to their implementations (3)
Managing requirements changes (4)

The main purpose of requirements management in the context of Domain Engineer-
ing is to ensure the consistence of requirements common to all related applications.

Thus traceability management is a crucial factor for product line engineering. Beside
the tracing aspects relevant for product development, following challenges addition-
ally have to be considered for tracing artefacts of product line engineering:

Bi-directional tracing between platform and application artefacts (5)

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
Elicitation

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
ElicitationScoping

RE for Application Engineering

RE for Domain Engineering

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
Elicitation

Requirements
Analysis

Requirements
Documentation

Requirements
Validation

Requirements
ElicitationScoping

RE for Application Engineering

RE for Domain Engineering

INDENICA D1.2.2

 9

Figure 3: Platform Development Process Overview.

2.1.2 Requirements Development
The main purpose of requirements development in the context of Domain Engineer-
ing is to evolve the requirements common to all related applications or a well-
defined subset of those applications and to document them in a structured manner.

All activities (already well-known for requirements development within product de-
velopment) have to be fulfilled on a higher degree of complexity.

Additionally to those tasks (known for general requirements development), Domain
Engineering requires an additional process step.

All these specific characteristics are described in the following chapter.

Scoping:

First of all it is crucial to define the scope for domain engineering (the platform sys-
tem or core asset base and its boundaries).

Based on the results of the analysis for goals and strategies of the product portfolio
(roadmap and strategy), the product line manager has to determine the scope for
the platform.

Essential prerequisite for the scoping process are

a commitment to business objectives

a clear definition of the marketplace

a product vision stretching out for the projected life of the product

 These strategic decisions build the basis for the following scoping process.

Output of this process step is a “Product Line Strategy”, the commitment of aspects
going into the product line, which is the base for the following Domain and Applica-
tion Engineering Process.

Scoping is separated into three phases:

INDENICA D1.2.2

 10

Product Line Scoping
Identification and description of products within product line

Domain Scoping
Identification of common and different areas

Asset Scoping
Identification of core asset base

Methods:

Hereafter we will outline a range of suitable methods for scoping:

ROI Calculation (see Section 2.5)

As „commitment to business objectives“ is an important aspect when intro-
ducing PaaS, it is crucial to estimate the “Return on Invest” (ROI) of such an
approach.

The method described in chapter 2.5 uses a bunch of parameters:

o on the one hand, hard data like number of versions and applications

o on the other hand, estimated factors as cost for developing and using
reuse assets with sophisticated formulas, which depend on the cho-
sen environment (only SW development, SW+HW development, etc.).

A promising approach when taking into account all conceivable conditions
constitutes a specific customization of the scoping process [John 2006].

The customization has to be applied according to different contexts:

o Operational Context

o Domain Characteristics

o Integratable Artefacts

o Enterprise Context

o Resources

This method specified in greater detail below bridges the gap between al-
ready existing scoping methods and the needs for ROI calculations oriented
to these contexts.

PuLSE-Eco (PuLSE process) see [PuLSe]

PuLSE-Eco is a method to define the scoping of a product line with emphasis
on economical aspects.

This method separates the scoping process into three parts:

o Product Line Mapping

In the first part, the infrastructure for the following scoping activities
will be set up.

This process step is primarily characterized by identification activities:

INDENICA D1.2.2

 11

all products relevant for the product line have to be identified
and described,

on the other hand, all technical domains and features have to
be identified that could be serving as a basis for the products.

As input, following artefacts can be used: expert know-how, product
plans, organizational structure and already existing systems.

The result of this process step consists of a high level description of
the product line and their domains.

o Domain Scoping / Domain Potential Assessment

In the next step the identified domains have to undergo an evaluation
of their domain potential.

The result of this process step consists of a range of promising candi-
dates for common domains.

o Asset Scoping / Reuse Infrastructure Scoping

The last step of PuLSE-Eco covers a detailed analysis and identification
of infrastructure assets meant for reuse resulting in a Product Map.

Organization Domain Modelling (ODM)

ODM is another method for the scoping phase within domain engineering
that has been developed by Mark Simos et al. in 1996 [STARS 1996].

It also consists of three major phases:

Plan domain

Model domain

Engineer Asset Base

whereas the first two aspects belong to domain analysis and the last one
(“engineer asset base”) is already part of domain design and implementation.
Hence, the two phases “Plan domain” and “Model domain” contribute espe-
cially to the scoping process, the first by defining and scoping the right do-
main, the second by describing and modelling the domain selected in the
previous phase.

Domain Scoping Framework

Another method for the scoping process is the Domain Scoping Framework
developed in occasion of the workshop “Domain Analysis in the DoD” in 1995
sponsored by the Software Reuse Initiative (SRI).

Elicitation:

Process Steps:

INDENICA D1.2.2

 12

Figure 4: Requirements Elicitation Process.

The main challenges concerning requirements elicitation within domain engineering
are [Pohl et al. 2005]:

Identification of requirement sources for the whole product line
First challenge in eliciting requirements for the whole product line is to identify
the range of requirements sources. A promising approach for identification is to
consider all already existing applications and their requirements to the product
line, as in most cases product lines are developed based on already existing ap-
plications.
As a product line may cover many diverse applications, this range of require-
ments sources possibly appears very heterogeneous and even contradictory.
This leads to the next challenge:
Identification of common requirements (commonality analysis)
The central benefit of PLE is the commonality of artefacts across diverse applica-
tions. For requirements engineering this implies the existence of common re-
quirements for several applications.

o A proven method for the evaluation of common requirements is the "ap-
plication - requirements matrix". In this matrix it is listed which applica-
tion is effected by which requirement. Requirements which appear for all
applications may be identified as common requirements.

o Another method is the priority-based analysis:
Different stakeholders are asked to prioritize a given set of requirements.
A specific algorithm calculating the relevance of each requirement for the
whole product line may give indication of the availability of common re-
quirements.

Identification of variable requirements (variability analysis)
The complementary analysis to commonality analysis is the variability analysis. It
is performed using the same methods as commonality analysis:

o application - requirements matrix
o priority based analysis

Requirements which are assigned only to a few applications or are high-
rated only by a few stakeholders may be identified as variable require-
ments

Monitoring of requirements along their lifecycle

INDENICA D1.2.2

 13

Requirements may change over their lifecycle from common to variable require-
ments. So it is important to monitor the requirements, if the classification of the
requirements is still valid.

Methods:

Now a range of suitable methods for elicitation will be outlined:

Interviews

A preferred way of eliciting requirements is to conduct an interview. Such an
interview may be executed individually face to face or by phone. It can be
held bi- or multilaterally. There are open and formalized interviews.

Creativity methods (brainstorming, mind mapping, …)

Especially requirements for new products characterized by a disruptive inno-
vation may be elicited by the use of creativity methods (“Six hats” by DeBono,
brainstorming, …). In the context of product line engineering this method can
be applied for identifying completely new aspects of domain engineering.

Focus Groups

Focus Group is a specific kind of group discussion with a well-defined group of
different stakeholders. The composition of the participants with preferably
different backgrounds are supposed to leverage existing synergy potential.

Innovation Workshops

Method to identify innovation potential using creativity methods (brainwrit-
ing, …) in the context of a group meeting

Customer voice table

Method revealing the veritable requirements behind a rashly expressed cus-
tomer request. (Part of the Kano model transforming the voice of the cus-
tomer into inputs for QFD)

Checklists

Helpful means in order to check completeness of all relevant aspects

UML

Unified Modelling Language for specification of systems. Following diagrams
belong to UML:

o Use Case Diagrams

Diagram specifying the actor and the use case (action)

o Class Diagrams

Other diagram of UML representing the static structure of classes (ge-
neric term depicting and abstracting common aspects of individual ob-
jects

o Sequence Diagrams

INDENICA D1.2.2

 14

Interaction diagram representing the exchange of messages between
objects

“Requirements Patterns” for requirements in natural language

Reusable templates for specific types of requirements (e.g. performance, reli-
ability…) leading to a complete set of requirements considering all relevant
aspects

IRENE (see Section 3.1)

IRENE is a method to elicit requirements via the goal model approach. The
tree representation illustrates all functional and non-functional requirements
with their dependencies and the related prioritizations.

(contribution of SAP on agile methods in RE)

Analysis:

The main challenges concerning requirements analysis within domain engineering
are [Pohl et al. 2005]:

Consistency Check
see [Lauenroth et al. 08]
Defining Requirements Variability
Based on the results of the commonality and variability analysis, it is essential to
develop a variability model which illustrates:

o variants
o variation points
o variability dependencies
o

Process Steps:

Figure 5: Requirements Analysis Process.

Methods:

Domain Analysis

e.g. Feature Oriented Domain Analysis (FODA) [Kang et al. 1990]:

FODA has been developed at SEI in 1990. It consists of three phases (Contex-
tual Analysis, Domain Modelling and Architecture Modelling). For require-
ments engineering only the first two phases are relevant:

INDENICA D1.2.2

 15

o Contextual Analysis covers all questions concerning the scope and
borders of the domain and the interfaces to adjacent domains and
their objects. Results of this contextual analysis are:

Context model

Structure model

o Domain Modelling is divided into three specific activities:

Feature Analysis

Result of the feature analysis is a feature model represented
by a feature list.

Information Analysis

The Information analysis identifies the objects of a domain and
describes the relations between these objects in an ER dia-
gram.

Functional Analysis

The Functional analysis considers the data flow within the do-
main as well as the state change of the affected objects. That’s
why two diagrams result from this activity (data flow diagram
and state chart diagram).

In [Schleicher2004], FODA is described by the following table:

Phase Activity Result Representation

Contextual Analysis Contextual Analysis Context model Data flow Diagram

Structure Model Block Diagram

Domain Modelling Feature Analysis Feature Model AND-OR-Tree

Feature List

Information Analy-
sis

Information Model ER-Diagram

Functional Analysis Data flow Model Data flow diagram

State chart Model State chart dia-
gram

Table 1: Feature Oriented Domain Analysis.

The architectural aspects of the third phase (Architecture Modelling) are not con-
sidered here, but some of the methods described here are used across several
phases.

Commonality and variability matrix [Mikyeong et al. 2005]

Methods to identify which requirements are mandatory requirements for all
variants and which are optional requirements.

INDENICA D1.2.2

 16

The matrix described in [Mikyeong et al. 2005] lists all identified require-
ments in rows and all considered applications in columns.

An “O” in a cell means that the requirement of this line is relevant for the ap-
plication of this column; an “X” says that this requirement is not valid for this
application.

The CV property denotes, if a requirements is bound for commonality or if it
is optional. If the ratio is more than 50%, it is a candidate for “Common” (C),
otherwise it is “oPtional” (P):

Req CV
property
/ Ratio

App1 App 2 App 3 App 4 App 5

Req 1 C / 100% O O O O O

Req 2 C / 100% O O O O O

Req 3 C / 100% O O O O O

Req 4 C / 100% O O O O O

Req 5 P / 40% X X X O O

Req 6 P / 20% X X X O X

Req 7 C / 100% O O O O O

Req 8 C / 60% O O X X O

User Centered Requirements Engineering (UCRE) (see chapter 3.5)

User Centered Requirements Engineering describes a further stage of the
commonality/variability (CV) matrix of [Mikyeong et al. 2005]. In addition to
it, UCRE allocates prioritizations and regards the single stakeholder group pri-
oritizing the particular requirements (see chapter 4.2).

Decision Modelling

The INDENICA-approach for decision modelling provides a decision making
support to the engineer on a conceptual, methodological, and tool-supported
level. Details see [INDENICA D1.3.1]

Feature Modelling:

Feature Modelling is widely used for the representation of functional re-
quirements for product line engineering.

It provides a specific representation of mandatory and optional features and
is able to describe several alternatives linked by OR-connection:

INDENICA D1.2.2

 17

Figure 6: Legend for Feature Modelling Diagrams.

Example:

Figure 7: Example for a Feat0075re Model.

Because of these illustration facilities, feature modelling is very well suited for
representation of commonality and variability aspects.

IRENE

Goal model approach for elicitation and analysis of requirements

Support is provided by the tool IRET (see Section 4.1)

Further methods for requirements analysis

Apart from the methods described above, there are some other methods
useful for requirements analysis:

o Scenario Methods

Scenarios describe typical interactions between the users and the sys-
tem (or between systems). Such scenarios may be used to analyse the
desired system behaviour and therefore even to reflect the validity of
requirements. In the research work of Colin Potts [Anton, Potts 2009],

INDENICA D1.2.2

 18

scenarios have been postulated for testing the utility and acceptance
of the system. Based on the principle of scenarios some methods have
been developed:

Inquiry Cycle developed by Colin Potts is a cycle consisting of
three steps in a cycle: Formulating, critical review, refinement.
It also uses the goal-oriented approach for requirements anal-
ysis. [Potts et al. 1994].

SCRAM (Scenario Based Requirements Analysis Method):

Alistair Sutcliffe developed this method, which provides a spe-
cific modelling language to describe scenarios [Sutcliffe1998].

GBRAM: Goal Based Requirements Analysis Method

GBRAM is the systematic application of inquiry questions for
the analysis and refinement of goals, scenarios and obstacles
as well as to attribute them to agents. [Anton, Potts 2009]

o Simulation Methods
The simulation of a system (e.g. mock ups, prototypes etc.) allows to
test the “look and feel” or the usability of a system without the need
of a fully implementation.

o Scoring / Rating Models

For prioritizing requirements, there exists a wide range of procedures:

Clustering / Hierarchy

In a first step, it is necessary to arrange requirements in a
structure, which guarantees that only requirements of the
same hierarchy level are compared with each other. In the
next step typical prioritizing methods like

QFD (Quality Function Deployment) and

AHP (Analytical Hierarchy Process)

may be applied.

Documentation:

The main challenges concerning requirements documentation within domain engi-
neering are:

Documenting variability in requirements artefacts
As well as in general requirements engineering, there are different ways of doc-
umenting requirements. In domain engineering the additional challenge lies in
the documentation of variability:

o Natural-language documentation
It is helpful to use graphical elements

o Documentation by graphical models
Describing requirements variability in a feature tree
Describing requirements variability in a Use Case model

INDENICA D1.2.2

 19

Describing requirements variability in other models
Tracing between artefacts and model

For all options it is essential to define and maintain the traceability from variability
model to the chosen artefact. Methods:

For documentation of variability in requirements artefacts following methods and
tools may be helpful:

Requirements Engineering Tools (e.g. DOORS, CaliberRM, …)
When documenting variability in requirements by the use of tools like DOORS
or CaliberRM, the database features of these tools bring high benefit. Rela-
tions and dependencies can be described and specific views triggered by a fil-
ter to get the requirements of a single variant can be selected.
Use Cases
By use of methods like UML (see “Elicitation”) or Feature Modelling (see
“Analysis”) commonality and variability of requirements can be described.
“Requirements pattern” for requirements in natural language (see “Elicita-
tion”)
Decision Modelling (see Deliverable 1.3.1, 1.3.2 in INDENICA)

Validation:

The main challenges concerning requirements validation within domain engineering
are:

High quality for common requirements
As common requirements have an immense impact on several or even all appli-
cations of a product line, the requirements engineer in domain engineering has
to focus especially on the quality of the requirements.
The quality aspects for general requirements engineering are valid to a special
degree.
Due to the complexity in domain engineering, it is an even bigger challenge to
comply quality attributes as "unambiguous" or "consistent".
Validation of variants
Depending on the relevance of requirements for specific variants, the specific
validation attributes of the requirements have to be set accordingly.
Thus two effects can be noticed:

o All relevant scenarios are covered by validation -> all variants and their
combinations can be validated

o Unrealistic scenarios are not considered by validation -> no need for use-
less excessive validation efforts

Process Steps:

INDENICA D1.2.2

 20

Figure 8: Requirements Validation Process.

Methods:

All known review methods, like
o Walkthrough
o 4 eyes review
o Formal inspection

may be applied for validation of commonality and variability aspects.
Simulation and Scenario methods (see “Analysis”)
Prototypes

Allocation to releases:

Process Steps:

Figure 9: Requirements Allocation Process.

Allocate requirements to release

o Allocation to product release

o Allocation to platform release

Beyond the allocation of the requirements to specific product releases, in
case of product line engineering the determinations of the scoping pro-
cess (see “Scoping”) have to be refined furthermore resulting in an alloca-
tion of identified domain requirements to platform releases and applica-
tion requirements to application releases.

Assign requirements to realization concept

o Assignment to product concept

INDENICA D1.2.2

 21

o Assignment to platform concept

For product line engineering, the architectural decision has to consider
the scoping determinations and consequently the differentiation between
components for the platform and components for specific applications.

Coordinate release plans

Manage traceability (see chapter 2.1.1)

The allocation to releases results in a release plan, whereas the “reference architec-
ture” is the outcome of the assignment to realization concepts. Both activities are
executed iteratively and parallel.

Methods:

Recursive Use of QFD (Quality Function Deployment)
Recursive use of QFD delivers an assignment of requirements to realization
elements on different architecture levels for platform and applications.
[ReleasePlanner]® offers a facility to assign features to releases according to
prioritization determined by all involved stakeholders.
Horizontal and vertical tracing
For product line engineering traceability is a crucial factor.
In addition to the aspects which have to be considered in a product develop-
ment, tracing for product line engineering has to face following challenges:
o Tracing between different variants

o Bi-directional tracing between platform and application artefacts

2.2 RE for Application Engineering
The main characteristic for requirements engineering within application engineering
consists in the presence of already existing requirements artefacts arisen from do-
main engineering. In the INDENICA context this will be the virtual service platform.
The applications built by application engineering will be the applications using the
services from the platform.

These results serve as essential input for all RE activities within application engineer-
ing, as the main target of product line engineering is to reuse as many artefacts built
in domain engineering as possible for application engineering.

Thus for requirements engineering that implies the reuse of existing RE artefacts
from domain engineering as [Pohl et al. 2005]:

Common requirements
Variable requirements

INDENICA Work Package 2 focuses on variability modelling in the specific INDENICA
service oriented context.

2.2.1 Requirements Management
Requirements Management for Application Engineering has to ensure the consist-
ence of all requirements of each specific application to

INDENICA D1.2.2

 22

other requirements of the same application

the requirements of the core asset base

the implementations within the applications

the changes along the product lifecycle

2.2.2 Requirements Development
Elicitation:

The main challenges concerning requirements elicitation within application engi-
neering are [Pohl 2005]:

Communication of requirements artefacts from domain engineering to the
stakeholders
Different from elicitation for single product development, in application engi-
neering it is necessary to inform all relevant stakeholders of the applications
about the variety of already existing common requirements and variable re-
quirements assigned to specific variants and the related variability model.
Based on these prerequisites the next activity has to be executed:
Establishing a set of variants appropriate for specific application
Using now this input from domain engineering, it is necessary to select - beside
the mandatory common requirements - appropriate variable requirements from
different variants.
After this evaluation a certain set of requirements - common requirements and
variable requirements arisen from different variants - is defined which already
fulfil a certain percentage of the original requirements of the stakeholders.
The remaining requirements not covered by the selected domain requirements
are considered in the next step:
Establish the delta between domain and application requirement artefacts:
Usually not all requirements of the application can be satisfied by domain re-
quirements. These application specific requirements have to be elicited addition-
ally to the domain requirements and are subject of the subsequent analysis activ-
ities.

Analysis:

The main challenges concerning requirements analysis within application engineer-
ing are [Pohl 2005]:

Additionally to the analysis activities like "Consistency checking", as described in the
chapter of domain engineering, it is essential to regard the relationships between
domain and application engineering activities and artefacts. Especially the analysis of
deltas between the domain variability model and the application variability model is
crucial for the further engagement in requirements analysis:

Impact analysis for deltas between application requirements to existing variabil-
ity model w.r.t. existing variation points:

INDENICA D1.2.2

 23

o If for an already existing variation point a specific option for this applica-
tion is missing, it might be necessary to add a new variant to an existing
variation point.

o If an existing variation point does not cover the correct variants, it might
be necessary to modify these existing variants

Impact analysis for deltas between application requirements to existing variabil-
ity model w.r.t. common requirements:
A common requirement might convert from common to variable, if a new aspect
- not yet considered in variability model - has been introduced. So a new varia-
tion point has to be added.
Decision about implementation of deltas
For each identified delta, it has to be decided, if this new part of the variability
model will be developed. Here, structuring and prioritizing activities as described
in the part "Domain Engineering" might be helpful.

Documentation:

The main challenges concerning requirements documentation within application
engineering are [Pohl et al. 2005]:

Documenting all requirements used from domain engineering:
Either the common requirements mandatory for all applications of this product
line either the variable requirements of the domain variability model used for
this application have to be described here.
Delta between domain and application requirements
All requirements which have not been derived from domain variability model
(requirements which are new or modified)
Application variability model:
Also the variability model of this application with its variants has to be described.

2.3 Relation to Agile Methodologies
Even in larger enterprises we can observe a clear shift away from traditional re-
quirements engineering towards more agile methodologies. A methodology to elicit
and analyse requirements that is applied (i.e., inside SAP) is User Story Mapping
(USM).

User Story Mapping helps to design products with customer in focus and provides a
methodology to establish the backlog that is needed to develop these products. User
Story Mapping helps teams get a common understanding of the requirements from
the user's point of view and it facilitates the backlog creation. This has been con-
firmed by the USM pilots at SAP. According to them, the main benefits of USM are:

Speed up of work of development teams

Improvement of backlog quality

Improvement of communication within the team, with other teams, and with
customers

Figure 10 gives an overview of the elements of a user story map.

INDENICA D1.2.2

 24

Figure 10: Elements of an User Story Map.

User story mapping typically has the following phases, as also depicted in the figure
above:

Product vision: The product owner and the solution owner develop a product
vision in close collaboration with the customer.

Backbone and architecture vision: Once the business case is clear, the prod-
uct owner develops the backbone of the user story map: personas, usage se-
quence and activities. The architect drafts the architecture vision.

User stories: In a USM workshop with the team and an USM coach, the back-
bone is further refined: the team defines the user stories thus creating the
backlog. Ideally the whole team collaborates to gain a common understand-
ing. This includes the product owner, solution owner, scrum master, archi-
tects, developers and information developers.

Prioritizations, estimating, slicing: Once the backlog is created, the team pri-
oritizes the backlog, estimates and prioritizes the user stories and defines the
release or sprint backlog.

"Deep" backlog: Typically after the USM workshop, the team reviews the
backlog and defines the "deep" backlog for the next sprint and enters it in the
backlog management system, e.g. Jira.

The product vision is a short description of the product that is going to be devel-
oped. For smaller projects, a few sentences can be enough. For bigger projects a few
pages might be necessary. Ideally, the product vision is developed by Solution Man-
agement, Product Owners, and Architects in close alignment with customers and
stakeholders. The product vision helps the team to understand and agree on the big
picture. Typically, the Product Owner presents the product vision in the USM work-

INDENICA D1.2.2

 25

shop. To make sure everybody has a clear understanding of the product vision, one
might want to do team exercises in the workshop:

Product box: The team creates the product box for the new product, e.g.
what features, benefits etc. The goal is to define a physical item that can be
put in a shelf in a shop and which will attract potential customers with ap-
propriate marketing messages.

Magazine article: The team writes a short article, e.g. a text about what
would the press like to report about a product?

The architecture vision is a short description about the architectural context of the
product, e.g. relevant platform, framework, technology stack etc. If the product al-
ready exists, the architecture vision typically also contains boundary conditions and
constraints. The architecture vision is developed by the architect and presented in
the USM workshop. For the USM workshop, the main aspects of the architecture are
enough. There is no need to have a detailed description. The architecture vision
might also change during the course of the workshop.

A persona describes an archetypical user of a system. Personas facilitate empathy:
they help to understand the requirements of real users and thus make better deci-
sions during the development process. The following Figure 11 depicts some exam-
ples:

Figure 11: Example for Personas used in User Story Mapping.

Personas should be based on actual knowledge of real users. For example, it is possi-
ble to observe users in their real job environment or one might conduct structured
interviews with real users. Then the research results are summarized by defining
corresponding personas, each with a name - e.g. Sally Sales - relevant characteristics,
motivations, requirements etc. Sometimes even a photo is assigned to make the per-
sona more "real". Typically, the Product Owner develops the personas. However, it’s
also possible to develop the personas in the USM workshop. Ideally, this should be
based on research data. If that's not possible, one should make sure you verify the
personas with customers.

The usage sequence shows the high level steps a customer will do with the software.
These usage steps are depicted as an end-to-end sequence which usually starts with
Install or Setup. The usage sequence does not differentiate between steps of differ-
ent users. It's rather the end-to-end customer view of the product. The usage se-
quence is typically provided by the Product Owner. Ideally, the usage sequence is

INDENICA D1.2.2

 26

based on customer research. It’s also possible to develop the usage sequence in the
workshop based on team discussion. The usage sequence must cover the main steps
end-to-end.

Activities - sometimes also called epics - describe typical things a persona wants to
do with the product. Activities are developed by breaking down the usage steps into
activities for the various personas. Sometimes, a certain usage steps can be broken
down into activities for several personas, sometimes only one persona is involved.
Typically, the Product Owner prepares the activities / epics as input for the USM
workshop. However, they can also be developed in a team discussion in the USM
workshop.

A user story describes the needs of users in the following format:

As <persona> I want <need> so that <business goal>

Example: As a Frequent Flier, I want to rebook a trip so that I save time when book-
ing trips that I take frequently.

Each user story is written on an individual card. On the back of each card, the ac-
ceptance criteria for this user story are written down: How can it be tested, demoed
or verified? During the USM workshop, a rough idea is often enough. It’s possible to
refine the acceptance criteria shortly before the next development sprint starts. This
helps avoiding waste – teams don’t want to define detailed acceptance criteria for
user stories that will never be implemented. The team develops user stories during
the USM workshop. Usually there is a separate brainstorming session used for that.

Once all user stories have been collected, it must be determined which ones should
be implemented in the next release. To do so, the moderator of the USM workshop
draws a line: all user stories above the line are going to be implemented in the next
release. This release scope should at least include the viable scope. An important
aspect is this task is the consideration of dependencies: if a user story is a prerequi-
site for another user story above the line, this user story also needs to be above the
line. One might also draw the lines for sprints and future releases. Usually there
should not be a plan that is too far ahead. When it comes to the actual prioritization
of user stories, the following factors need to be considered: business value, technical
risk and effort. For each of these aspects, different methods can be applied. For ex-
ample, to assess the business value, one might want to consider the Kano model that
differentiates between feature types: delighter, satisfier, must-have. To estimate
feasibility, one might want to use techniques such as: in/out vote for each story,
planning poker or magic planning However, some teams do the effort estimation
later. Then the release line just represents the common gut feeling regarding what is
feasible for the next release.

User Story Mapping has been successfully applied to application engineering. Inside
SAP there are a lot of product teams which work in an agile mode and which apply
USM to define the backlog for their products. However, there are no reported expe-
riences which it comes to eliciting the requirements for a platform. This is due to the
blurry picture of the stakeholders of a platform. While it relatively easy to define
personas for an actual application, this task is must harder for a platform.

INDENICA D1.2.2

 27

2.4 Application of process on virtual service platforms

Model
Variability

Define VSP
Orchestration

Generate
Integration

Deploy
VSP

Adapt
Platforms

Monitor
Platforms

Define VSP
Constraints

Define VSP
Capabilities

Deploy Domain
Platform Variant

Resolve
Variability

Platform
Provider

Platform Variant
Creator

Platform
Architect

Platform
Integrator

Platform
Admin

Develop
Application

Application
Developer

Out
of

IN
DE

NI
CA

Fo
cu

s

Design TimeDesign Time Run TimeRun Time

Requirements Development
applied to VSP Process

1

12 2

23 3

4

4

4

Figure 12: Requirements Development applied to VSP process.

The INDENICA Process as specified in [INDENICA D3.2] has a role oriented process
view whereas the generic platform domain and application development process as
shown in Figure 1 is phase oriented.

Mapping the four phases: requirements engineering (1), design (2) realisation (4) and
testing (4) to the INDENICA process show that the two role related activities “Define
VSP Capabilities” and “Define VSP Constraints” have to cover these phases.

INDENICA methods and tools support the definition of VSP capabilities and con-
straints with following methods and tools:

ROI calculation for scoping the VSP approach

IRENE for eliciting and analysing capabilities by modelling goals, entities and
operations

User Centered RE for analyzing and prioritizing goals

IRENE for validating capabilities with applying formal methods on the goal
models

INDENICA D1.2.2

 28

2.5 ROI Calculation
The generic ROI formula presented in [D.1.2.1], chapter 5.1 is usually not applicable
in its generic appearance. Too many terms have to be estimated, were most of the
terms happen to be estimations of future occurrences.

The accuracy of future estimations can be increased, if the terms can be extrapolat-
ed from past behaviour. [D.1.2.1], chapter 5.2 explained how this was done in a cus-
tomer project. The basic assumptions for the business adapted formula and tool pre-
sented in this chapter are:

(1) Costs are dominated by development efforts

(2) Linear dependency between development cost and test cost

(3) Linear dependency between the costs from one version to next version

(4) Constant number of product lines and linear effort dependency between them.

Assumption (1) heavily depends on the business case. [D.1.2.1], chapter 5.3 explains
how additional cost terms have to be considered if (1) is not true. Assumption (2) is
likely true for most development projects. Assumption (3) depends on the developed
product and the maturity of the core asset base. Non-linear dependencies may show
up in certain cases and an in-depth analysis of the current situation is necessary be-
fore it is allowed to use assumption (3); e.g. Creuse may increase from version to ver-
sion due to increasing management and retrieval costs for a growing core asset base.
If non-linear dependencies show up, then the tool needs to be adapted accordingly.
Assumption (4) depends on the organization’s situation.

Using these assumptions formula 3.2 translates to:

V

v

X(v)

1x
xv,Cxv,Cxv,CCVXC specificreusecaborgple

1
,

Formula 1 : Development cost for a applications based on a core asset base

V = number of versions
X = number of applications or product lines, based on the related Core Asset Base
Corg = Cost for reorganization, process improvement, training, etc.
Ccab = Cost for Core Asset Base development (incl. test)
Creuse = Cost for reusing core assets (e.g. adaptation, configuration)
Cspecific = Cost for product line specific development (incl. test)

INDENICA D1.2.2

 29

FS adapt

non-PLE Approach PLE Approach

1st

version

2nd

version

3rd

version

1st

Product
2nd

Product
1st

Product
2nd

Product

FR adapt

FS adapt

Foverhead

Cscoping

F cab

Figure 13: Example cost factors for 3 versions of 2 product lines, CAB cost evenly distributed.

specificreusecaborgple CCXCCVXC ,

adaptspecificcabreusecabcab FSCFCXFCV 1

This can be resorted to:

orgple CVXC ,

cabreusecab FVCXC 11

adaptspecific FS1-V1CX

and with

yemplemplorg WCNC /

scopingoverheadreuseprodcab CFFCC

adaptcabreuse FRCC

reuseprodspecific FCC 1

The formula can be translated to:

yemplemplple WCNVXC /,

cabadaptscopingoverheadreuseprod FVFRXCFFC 111

adaptreuseprod FS1-V1FCX 1

Formula 2: Business case adapted development cost formula

See Figure 2.9 and 2.10 for an explanation of the terms.

INDENICA D1.2.2

 30

Based on this example a small Excel-Tool was developed that allows a simple applica-
tion of this business case adapted formula. This tool will be described in this chapter.
It should be simple to adapt the tool to other business situations.

Term Remark

N empl Number of employees known figure;
organization dependent

W y working weeks per year known figure;
country dependent

C empl Cost (person weeks) per employee for reorganization, training, etc. estimated

C org
Cost (person years) of changing the organization:
Nempl x Cempl / Wy

calculated

C prod_D
Cost (person years) of developing one product from scratch
(non-PLE approach)

known figure;
based on past projects

C prod_T
Cost (person years) of testing one product from scratch
(non-PLE approach)

known figure;
based on past projects

C prod
Cost (person years) of developing and testing one product from
scratch: Cprod_D + Cprod_T

known or calculated

FS adapt
Factor for the effort to evolve specific SW for reuse in a product:
(=1 for new SW)

known figure;
based on past projects

C prod_evo
Cost of evolving one product (non-PLE approach):
FSadapt x Cprod

calculated

C scoping Cost (person years) for identification of common SW estimated

F reuse Reuse Factor; i.e. percentage of reusable SW estimated

F overhead
Overhead Factor for the extra effort to make SW reusable;
incl. additional design and testing, documentation, training, etc. estimated

C cab
Cost of Core Asset Base:
Foverhead x Freuse x Cprod+ Cscoping

calculated

F cab Fraktion of Core Asset Base that changes with each new version estimated

C cab_evo
Cost of evolving the Core Asset Base for the next version:
Fcab x Ccab

calculated

FR adapt Factor for the effort to adapt core assets for reuse in a product estimated

C reuse
Cost of using the core assets to build the first product:
FRadapt x Freuse x Cprod

calculated

C reuse_evo
Cost of using the core assets from 2nd version:
FRadapt x Fcab x Freuse x Cprod

calculated

C specific
Cost for initial development of unique SW parts:
(1-Freuse) x Cprod

calculated

C specific_evo
Cost for evolving unique SW parts to build a new version:
FSadapt x (1-Freuse) x Cprod

calculated

Figure 14: Example cost factors for 3 versions of 2 product lines, CAB cost evenly distributed.

Figure 14 shows the table of the sheet, were the input figures of the formula can be
entered. Only a few figures need to be estimated, some should be known by the or-
ganization from experience.

All other sheets use these figures to calculate the cost ramp up in 4 different scenar-
ios:

INDENICA D1.2.2

 31

(1) green field, 1st version

(2) green field, version development

(3) reengineering, 1st version

(4) reengineering, version development

Scenario (1) compares a non-PLE approach with a PLE approach and evaluates how
many Product Lines are needed to reach a cost break even already with the first ver-
sion. In the example, Figure 15 the cost break even will be reached with 2 product
lines based on a core asset base (CAB). With 3 product lines based on a CAB there is
already a significant cost advantage compared to 3 independently developed prod-
ucts.

Product Lines / first version (new development)

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

1 2 3 4 5
Product Lines

Pe
rs

on
Ye

ar
s

PLE approach
non-PLE approach

Figure 15: Example for scenario (1); cost break even with 2 Product Lines.

Scenario (2) takes a given set of product lines and evaluates how many versions are
necessary to reach a cost break even. The example in Figure 16 uses the same input
as the example in Figure 15.

Figure showed already a cost advantage for 3 product lines based on a CAB and Fig-
ure 16 shows that this advantage increases with each additional version developed;
i.e. over time.

INDENICA D1.2.2

 32

Versions / 3 Product Lines (new development)

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

1 2 3 4 5
Versions

Pe
rs

on
Ye

ar
s

PLE approach
non-PLE approach

Figure 16: Example for scenario (2); advantage for PLE approach increases with each version.

Scenario (3) assumes that existing products shall be reengineered towards a PLE ap-
proach, and evaluates how many Product Lines are needed to reach a cost break
even already with the first version.

Figure 16 shows that, again with the same inputs, there is no chance to reach a cost
advantage with a PLE approach in the first version. This is expectable because in a
reengineering scenario the non-PLE approach does not show the large development
costs for the first version, whereas the reengineering cost for a transfer from the
current non-PLE approach to a PLE approach needs significant efforts for the first
version, which are (in this example) assumed to be as high as for a development
from scratch.

INDENICA D1.2.2

 33

Product Lines / first version (reengineering)

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

500,00

1 2 3 4 5
Product Lines

Pe
rs

on
Ye

ar
s

PLE approach
non-PLE approach

Figure 17: Example for scenario (3); no cost break even with fist version possible.

Scenario (2) showed that a PLE approach gained advantage with each version devel-
oped. Therefore scenario (4) again assumes that existing products shall be reengi-
neered towards a PLE approach, and evaluates, with a given set of Product Lines, if a
cost break even can be reached with an increasing number of versions.

With again the same input values as in the other examples, here a cost break even
for 3 product lines based on a CAB shows up shows up with the 7th version; i.e. an
income break even may show up with version 13 or 14. This is far in the future and
many disturbing events may show up in-between that influence the costs. In this
example it would not be advisable to perform a reengineering towards a PLE ap-
proach.

INDENICA D1.2.2

 34

Versions / 3 Product Lines (reengineering)

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1 2 3 4 5 6 7 8 9 10
Versions

Pe
rs

on
Ye

ar
s

PLE approach
non-PLE approach

Figure 2: Example for scenario (4); cost break will be reached very late; return on invest questiona-
ble.

Tool Support

The Excel spreadsheet for RoI calculation is available under:
https://repository.sse.uni-hildesheim.de/svn/Indenica/deliverables/wp1/d122-release

Summary

Depending on the scenario in which an organization operates, the adaptation of the
generic Formula 2 in conjunction with a simple Excel application allows a fast estima-
tion if it is recommendable to use a PLE versus a non-PLE approach or if it is advisa-
ble to switch over from a non-PLE to a PLE approach. The accuracy is sufficient for
strategic decisions and the adaptation reduces the set of terms to be estimated to a
handful of values.

INDENICA D1.2.2

 35

3 INDENICA specific notations

3.1 IRENE
IRENE has evolved over the last year. It evolved as planned to both incorporate the
new elements foreseen during the project, and also to take into account the sugges-
tions and new requirements from the users. This means that IRENE is now a more
complete notation: besides the purely syntactical elements, now it also provides
means to ease the integration with other elements in the project, and also to sup-
port the actual and effective integration of different requirements models, or differ-
ent views on the same model.

The next sections provide a brief overview of the main changes and addition to the
notation, while Section 4.1 explains the evolution of IRET, that is, the toolset devel-
oped in the project to offer IRENE to its users.

3.2 Views
Traditionally, requirements models ---rendered as goals--- are presented as single
diagrams. In IRENE, they would be single trees1, but real problems usually lead to
complex diagrams that the user cannot easily manage and navigate. The problem
here is not to extend the concrete syntax of the language, but to offer users means
to slice their diagrams and identify proper views on them. The problem, and then the
obvious requirement, became evident as soon as the final users started modeling
their problems with IRENE/IRET. Clearly, they needed a better means to:

Structure models. As said before, when models are not trivial, one must find
suitable ways to render them, and to let the user work on them. Views should of-
fer the opportunity to split a complex model into usable and understandable
chunks, but it should also allow one to emphasize a particular set of elements.
These means that some elements may belong to different views, while others
could be rendered in a single view (obviously, each element must the present in
at least one view)
Integrate different viewpoints. Since IRENE was created with the idea of defining
a goal-oriented requirements elicitation notation for service platforms, the prob-
lem we had to face was the definition of means to start from different view-
points: the viewpoints of different stakeholders on the same platform or the elic-
itation of the requirements of different applications that could be based on the
same platform. Clearly, one may start from different models and then try to pro-
duce a new one by “integrating them”, but this would not be the best to stress
the cohesion among these different, but related, models. This is why we think
that views can also help here. A view can easily render a particular viewpoint on
the same model and then become a way to properly relate a set of (loosely) re-
lated IRENE models.

1 Even if this is not completely correct since dependencies might turn trees into acyclic graphs.

INDENICA D1.2.2

 36

Given these requirements, we borrowed from the way many UML tools work. We
decided to distinguish between model elements and representations. Each model
element has a single identifier, but this is not new, and now it can be associated with
different representations in different views. Each element can only be represented
once in one view, but then the actual structure of the different views is up to the
user. Whenever a new model is created, it is implicitly associated with a view; the
user can always create others as soon as needed.

Figure 18: Independent and dependent views.

Given the requirements above, we can have both independent and dependent views.
The former (Figure 18.a) do not share elements, and could be used to unify different
trees, that is, to merge the requirements that come from different applications that
should be supported by the same platform. The latter (Figure 18.b) share elements,
and could be used to structure a single tree into meaningful and usable sub-trees,
where the root of a view is a leaf in a previous one.

3.3 Variability support
As already described in Deliverable D1.3.1, IRENE explicitly captures base infor-
mation for variability decisions and constraints among them. Each element of IRENE
can be associated with variability-related comments. The hypothesis is that the user
specifies:

The variable aspects of the element. This information is mandatory to start un-
derstanding the actual variability the user wants to embed in the model. If one
started identifying variability here, the whole variability specification process
would move towards continuous refinement in an incremental way;
The values varying aspects are expected to assume. Again, this is important to
provide sufficient information to enable the actual design of the variability that
the user wants to embed in the platform-to-be;
When this variability should be resolved. Even if, traditionally most of the varia-
bility is/was resolved at design time, the particular context, that is, service plat-
forms, may also require a more dynamic approach towards variability, and thus
one may say that the actual decisions are taken at deployment-time or even at
run-time;
The links and constraints with other variability requirements. Even if variability
requirements are stated independently for each notation element, the user must
be aware of links with other elements and possible constraints. Informal com-
ments are just a first step towards the definition of a complete, coherent, and
sound variability model of the whole platform-to-be.
Finally, we also envision the possibility of adding free notes and comments as
further suggestions and placeholders for the next steps.

INDENICA D1.2.2

 37

This information is provided mainly as comments, but the user can also exploit a
tighter integration with WP2 and exploits the key elements of the Indenica Variabil-
ity Modeling editor. The purpose of this information is twofold: it feeds the actual
design of the variability that belongs to the platform-to-be and provides the basis to
initiate the decision process.

3.4 Model integration
One of the key tools needed for modelling the requirements of service platforms is
the capability of integrating different views (models). As already said, we think that
the requirements may come from different stakeholders, and this does not only ap-
ply to service platforms, but they may also come from considering the different ap-
plications that are supposed to exploit the services provided by the platform.

After introducing the views, the new version of IRENE also proposes a simple, but
effective way for integrating different views. The algorithm is based on some key
assumptions:

The final decision about the actual similarity between two goals, entities, or op-
erations is always up to the user. The automated solution is only supposed to
help highlight the similarities, but it does not decide anything.
In order to keep things simple, the similarity is only evaluated on the names of
the different entities. The only exception is that we also consider the priorities
associated with goals. This is because priorities are important, and different
stakeholders may have different opinions, but if one considered all the proper-
ties, the decision process would become too complex and too time consuming.
The user is in charge of setting the actual “precision” of the analysis. Clearly, the
extreme that any name is similar to any other would be useless, but also the
strict equality between the two strings could be too tough. This is why we decid-
ed to reuse a well-known information-retrieval algorithm to state the similarity
between words, and let the user set the filter: from 1, which is the perfect match,
to 0, which would mean no match and thus all elements are similar to all the
others.
Finally, to ease the integration and identify a clear starting point, we decided to
work incrementally. The user must decide a reference view, which is considered
to be the master model, and the algorithm reasons on the similarities, and dif-
ferences, between this view and the others.

The key idea of the algorithm is simple and neat:

If entities and actors are not considered to be similar, they are added to the ref-
erence views.
Since goals are organized in hierarchies, and the ones of the reference view must
be kept, considered-to-be similar nodes are merged, while those that are not
similar are added accordingly by following the patterns of Figure 19.

The figure uses colours to highlight the similarity, or difference, between nodes. All
patterns are self-explanatory. The last two rules must add a “placeholder” node to

INDENICA D1.2.2

 38

keep the hierarchy. This means that the proposed result is not complete, but the
intervention of the user is required to either give a meaning to the placeholder,
maybe by merging it with another goal, or remove it and thus change the topology
accordingly.

Figure 19: Some of the patterns used to integrate/merge views.

3.4.1 Semantic similarity
The similarity between two words w1 and w2 is computed in three steps: tokeniza-
tion, stemming, and distance evaluation. Tokenization decomposes w1 and w2 in
two sets of terms: w1 = {t1,i} and w2 = {t2,i}. It considers case changes, underscores,
hyphenations, and numbers. The terms resulting from the tokenization are
stemmed: words like sending or exchanged are transformed into their stemmed ver-
sion: send and exchange. The stemming process is a well-known process adopted by
several information retrieval approaches [Lennon et al. 1988]. The third step is about
the computation of the similarity wSim, obtained by exploiting the assignment prob-
lem in bipartite graphs:

INDENICA D1.2.2

 39

Before discussing how wSim works, we introduce the bipartite graph assignment
problem since it provides the basis for our similarity function. Given a graph G = (V,
E), where V is the set of vertexes and E the set of edges, M E is a matching on G iff
no two edges in M share a common vertex. If M covers all the nodes of the graph, G
is bipartite. This also means that each node of the graph has an incident edge in M.
Let us suppose that the set of vertices are partitioned in two sets Q and P, and that
the edges of the graph are weighted according to function f : (Q, P) [0..1]. Func-
tion maxSim: (f, Q, P) [0..1] returns the maximum weighted assignment, that is,
an assignment such that the average of the weights of the edges is maximum.

The inputs are the two sets of tokens {t1,i} and {t2,i} that compose the two words to
be compared, and function termSim : (term,term) [0..1] that returns the similarity
of two tokens. This way, wSim returns the word similarity as the sum of the similari-
ties between the pairs of tokens that maximize such a sum. On this basis, termSim
holds a central role in the computation of the similarity.

The literature proposes several approaches to state the similarity and relatedness
between terms. These algorithms usually compute such a similarity by relying on the
relationships among terms defined in a reference ontology (e.g., is-a, part-of, attrib-
ute-of). Our approach computes the similarity between terms by adopting the solu-
tion proposed by Seco et al. [Seco et al. 2004]: they rely on the assumption that con-
cepts with many hyponyms 7 convey less information than concepts that have less
hyponyms or any at all (i.e., they are leaves in the ontology).

Note that wSim returns the maximum sum divided by the number of terms compos-
ing w1. Indeed, in the application of the assignment problem in bipartite graphs to
our context, set t1 represents a query, whereas t2 is what we compare against the
query to evaluate the similarity.

3.4.2 Requirements matching
The measure of similarity between operations can also be used to try to match the
requirements defined for a new platform-to-be against a set of already existing solu-
tions. The solution is not perfect, but it could be really effective.

The two key ingredients are the IRENE model of a new platform and the services
provided by existing solutions (models as actors and operations). This means that
either these platforms had been already specified using IRENE, or some “spurious”
models have been defined to enable the comparison.

After setting the actual degree of similarity, the same algorithm defined to integrate
different views can now be used to simply highlight the similarities, and thus to let
the user easily understand what already exists ---or may exist--- and what should be
implemented from scratch. The only difference is that in this case, the result is not
an integrated view, but the actors and operations of the IRENE model of the plat-

INDENICA D1.2.2

 40

form-to-be are properly annotated to clearly mark those that have already been im-
plemented and those that do not exist among existing platforms.

3.5 User Centered Requirements Engineering

3.5.1 Motivation: Summary of work presented in D1.2.1
In the first version of this deliverable we introduced the aspects of User Centered
Requirement Engineering. Based on the ideas of the Johari Window, that identifies
four distinct areas of perception, we defined a method for bringing together the
viewpoints of a variety of user (or stakeholders) on a system or a platform.

We defined User Centered Requirements Engineering as a well defined part of User
Centered Design. For this sake we derived three dimensions that play a role in elicit-
ing and analysing the users’ needs:

1. The user dimension describes how close the user is to the system and its user
interface(s).

2. The importance dimension describes how important a requirement is for a
user or a user group.

3. The requirements dimension files all requirements and the topics that could
cluster the requirements to larger logical areas.

3.5.2 Graphical display of Priorities
For the graphical analysis of requirements, user groups and the priorities a three
dimensional display could be used like shown in Figure 20.

XY

Z

XY

Z

Figure 20: Three-Dimensional Display of Users, Requirements and Priorities

For every user (x-axis) each requirement (y-axis) is tagged with a priority (z-axis). This
leads to a multi-column chart that might give an overview on the homogeneity if
priorities among users and for distinct requirements. But for a real analysis it has
some drawbacks:

Low priorities could be hidden / invisible

INDENICA D1.2.2

 41

In case of large set of requirements the requirements axis is much longer that
the axis of users

Further details of priority analysis cannot be displayed without display conflicts. Even
advanced graphical facilities like changing viewpoints, zooming, selecting did not
really provide necessary insights.

For these reasons we decided to go back to two two-dimensional displays for imple-
menting a supporting tool.

3.5.3 Analysis of Conflicting Sets of Prioritization
The graphical analysis of sets of prioritization is done in two views:

The requirements view looks at the variation of priority votes from different users.
There are different calculation methods to derive a best-fitting value from a set of
estimations:

The average mean

The median

For a small set of discrete values the median value is more meaningful and less sensi-
tive with outliers. It is defined as the value that is in the middle of a sorted list of val-
ues.

Neither the average nor the media give information on the distribution of values. For
this purpose we use the variance that is defined as the mean square deviation from
the average value.

The application of these values will be discussed in following chapter, where we can
see the implementation in a tool and examples from real data.

Figure 21 shows an example of a user voting on a requirement. Four out of five users
voted 1 (unimportant), one voted 4 (very important). The reasons behind that can be
manifold and need to be investigated:

User 4 could have misunderstood the requirement

All other users could have misunderstood the requirement

User 4 has a very different view on the platform and thus his voting differs
from the others

In any case a discussion, a clarification or further investigation is needed in order to
agree on a final priority of the goal.

INDENICA D1.2.2

 42

Figure 21: User voting (blue) and median (red) on a single requirement

The user view looks at the voting of a single user. An average or median value is not
of interest here, but we can also look at the variance in order to see if the user ap-
plied the full range of voting possibilities or a very narrow one.

Figure 22: Voting of a single user on all requirements (blue) compared to the median (red)

The user voting in Figure 22 shows that the user never used Priority 1 and 4. This
could be an indicator that the user is often quite unsure about the requirements,
maybe did not understand the overall context. In such a case a clarification with the
user could lead to a new set of priorities that reflect better the user’s view on the
system.

In order to support prioritization of goals that were modelled with IRET a tool sup-
port was implemented. It consists of two parts:

The goal extractor

The priority analyzer

Strategy for extracting items from a goal model:

INDENICA D1.2.2

 43

Prioritization Model

…

Workflow

The workflow is shown in Figure 23, the tools and their interfaces are described in
chapter 4.2.

IRET Model

Goal List

Users Votings

Goal Extractor

Voting Analysis

Goal Priorities

 Figure 23: Workflow of Goal Model Prioritization.

INDENICA D1.2.2

 44

4 Tools

4.1 IRET
This section presents the final version of the tool for the goal-based requirement
engineering modelling, named IRET (IRENE Toolset). IRET is developed following a
model-driven approach based on an EMF model (see [EMF] for details). In [INDENICA
D1.2.1] we described the original EMF model behind the first version of the tool.
During this second year we finalized the development the tool adding several fea-
tures. Some of them require an update to the original EMF model. Figure 24 is the
object model showing the updated EMF schema behind IRET.

Figure 24: Updated IRENE object model.

In the following subsections we will describe in detail the improvements of IRET,
here we briefly introduce the main changes in the EMF model:

Events attributes: the relation between the Event class and the Attribute class
have a 0..* cardinality. This allows the user to describe an event in term some pa-
rameter e.g. date time, kind of event, recurrence, ...

Attribute types can be model entities. the Attributes can be "Primitives" or "En-
tityAttributes". An EntityAttribute type is defined by another entity of the model.
Thus, the modeler can define new Entities and use them as types for other enti-
ties attributes.

INDENICA D1.2.2

 45

The concept of IreneModel has been explicited and a general concept of IreneEl-
ement has been introduced. As an example, this allows the modeler to define
two models (or one model with two views) reusing the same element in both.

An IRENE element can be generated starting by another element. An De-
rivedFrom relation is introduced for this purpose.

An extension to support the variability model defined by WP2 has been intro-
duced.

The rest of the section is structured as follows: in Section 4.1.1 we explain the exten-
sion for managing Events and Entities; in Section 4.1.2 we introduce the multi-view
mechanism to manage in several diagrams the same model. Section 4.1.3 presents
the model merge process, while Section 4.1.4 lists other minor improvements avail-
able in the last version of IRET. Finally in Section 4.1.5 we describe the integration of
IRET with other INDENICA tools.

4.1.1 Improvements on Attributes, Events and Entities
IRET implements Entities; as the name suggests, entities represent both abstract and
concrete concepts in the real world. An entity has a state and a set of attributes; an
attribute is a <key-value> pair describing one property of the entity. It means that in
the model the Attribute object is a class with two properties: the name of the attrib-
ute (the key) and the type of the value.

The previous version of IRET, described in D1.2.1, implemented a simplified version
of the attribute class (Figure – Before): the attribute type could be one of the primi-
tive ones: Number, Boolean and String.

Figure 25: Updated attributes in the IRENE model.

In the new version of IRET we updated this model introducing the idea that attrib-
utes can be also of complex types. As shown in the right side of Figure 25 (After), the
Attribute class now has two subclasses: PrimitiveAttribute and EntityAttribute. While
PrimitiveAttribute models the attribute with value of simple types (Integer, Boolean,

INDENICA D1.2.2

 46

String or Float), EntityAttributes can be used to indicate that an attribute has a com-
plex type (another Entity).

Both Entity and Event have a set of instances of the Attribute class. By a graphical
point of view, users can create and delete attributes through a dedicated tab in the
Property View.

Figure 26: Attributes UI.

The tab is shown only when an instance of Entity or Event class is selected; Figure
shows an example: in the model there are two entities, Professor and Course (Figure
.1). When Course is selected, in the Property View a tab with label Attribute is shown
(Figure .2): at this point the modeller can add variables compiling the form, indicat-
ing the name and the type of the attribute. It is worth noting that the difference be-
tween PrimitiveAttribute and EntityAttribute is hidden to the modeller: she could
manage them in the same way. In Figure .3 the user wants to create an attribute
with name “teacher” and type “Professor”; when she presses the Add button IRET
creates an instance EntityAttribute associated to the Course entity. As shows in Figu-
re .4, below the new attribute form there is the list of the created attributes: user
can delete the attribute through the Del button.

4.1.2 Views
The new version of IRET implements a multi-view mechanism: it allows users to cre-
ate multiple diagrams related to the same model. This feature is useful in several
situations, for example:

INDENICA D1.2.2

 47

a modeller, in order to manage huge IRENE models, can split it in multiple views;

multiple users can manage different parts of the same model (i.e. one modeller is
responsible of modelling high-level goals capturing the and one more “technical”
modeller for the low-level ones);

manage the needs of several stakeholders maintaining a unique model;

With the introduction of the multi-view mechanism we modified the IRET EMF mod-
el, adding three new classes. The schema of the new model is shown Figure .

Figure 27: IRET multi-view model.

The new classes are:

- IreneElement: it represents the concepts defined by IRENE (goals, agents, opera-
tions, events, attributes, etc.). All the IRENE elements involved in the IRET EMF
Model inheritates this interface;

- View: it is a container of the instances of IRENE elements shown in a diagram.
One view can contains one or more IRENE elements, and one IRENE elements can
be related to one or more views. Each view has two attributes: the name and one
flag to indicate if it can be modified;

- IreneModel: it represents one IRENE model, it is a container of instances of IRENE
elements and views.

While models are stored in files with extension .iret, the views are stored in files
with extensions .iret_diagram. When users create a new IRENE model a default
view with the same name is automatically generated (i.e. if user create a model
model1.iret, then a view model1.iret_diagram is automatically generat-
ed).

In order to add new views to existing models, users use the dedicated wizard availa-
ble in the IRET wizard folder (Figure).

INDENICA D1.2.2

 48

Figure 28: Entering the wizard tools.

Figure 29 shows the main dialog of the wizard: the user should select one existing
IRET model in the workspace (through the Select... button) and then she should fill
the form indicating the name of the view and if it can be modified.

Figure 29: New View wizard: giving a name to the new view.

When the user end the process (pressing the Finish button), a new
.iret_diagram files with the name indicated by the user is created (Figure). At
this point the user can start to edit the model using both the views.

INDENICA D1.2.2

 49

Figure 30: New View wizard: the perspective ready with the new view added to the model.

The new multi-view mechanism requires a method to reuse the existing model com-
ponents in different views. IRET provides a drag and drop feature to achieve this
goal.

Figure 31: IRET Drag and Drop

As shown in Figure, the navigation panel shows the list of all the available elements
of the IRENE model. Users can drag the elements in the drawing area and when they
drop it a graphical representation of the element is created in the active view. This
view should be one of the available views of the source model (otherwise nothing
happens).

4.1.3 Merge
The merge function provides to fuse two input models into a single one as the result
of a semantic analysis process between the nodes. A specific Eclipse perspective2 was
developed for this purpose. The Figure shows how to switch to this perspective.

2 In the Eclipse Platform a Perspective determines the visible actions and views within a window providing mech-
anisms for interaction with resources, multi-tasking and information filtering

INDENICA D1.2.2

 50

Figure 32: Switching to the Merge Perspective.

When the modeler swhitch to the IRET Merge Perspective a new panel appears on
the left bottom corner as shown in Figure 33.

Figure 33: The Merge Perspective

In order to start the merge operation the modeler uses the New function in the
Eclipse menu and selects Merge Models under the IRET section, as shown in Figure .

INDENICA D1.2.2

 51

Figure 34: How to launch the Merge models wizard.

The merge operation is organized in steps. The first step is to choose the two input
models to be merged and the name of the output model.

Figure 35: Merge models wizard: selecting the Input Models.

The first model will be the one with higher priority: i.e. in case of two nodes named
“A” and “B” with the same meaning (high semantic proximity), the output model will
contain a merged node named “A”.

INDENICA D1.2.2

 52

Figure 36: Merge models wizard: giving a name to the Output Model.

By pressing the Finish button the analysis process starts. The nodes of the two mod-
els are compared and the similarity between nodes is evaluated. The similarity is
based both on the semantic proximity of the names of each node and on the priority
of each node as assigned by the modeler in the original model.

The name of any entity could be any sentence in natural language. The aim of the
comparison process is to obtain the semantic proximity expressed as a number in a
range from 0 to 1. In this version of the prototype the semantic proximity evaluation
is based on the vocabulary defined by [WordNet]. The implementation semantic
comparison algorithm is based on a third part Java library [JavaSimLib]. This library
returns a numeric value in a range 0..1 that represents the degree of similarity be-
tween two words in English. As mentioned the similarity between the names of the
nodes is then normalized taking into account the priority of a node (and of the un-
derlying requirement or goal) in a model. This improves the quality of the result of
the merge operation. In fact comparing complex graphs can lead to conflicts that
have to be solved by the modeler and the information about the priority of the
nodes in the original model supports the right choice.

INDENICA D1.2.2

 53

Figure 37: Merge models wizard: the Perspective ready for merge output

The result appears on the Merge View panel. The user can decide to accept or dis-
card each of the suggestions about a possible similarity proposed by the tool. If the
user does not confirm a proposed similarity on a couple of nodes he/she force the
algorithm to consider them as two different nodes in the result graph.

As we mentioned the semantic proximity is expressed in a 0..1 range, thus IRET in-
troduces the concept of Sematic Confidence and offers to the modeler a scale regu-
lator the user can play with. Setting the regulator to 1 means that the modeler can
confirm only merges between nodes that have strict semantic proximity. Thus, only
couples of nodes that obtain the highest index from the comparison algorithm are
considered nodes. Setting the regulator to 0 imply that the algorithm does not per-
form any comparison and considers any node belonging to the first input model as
different from any other in the second model.

INDENICA D1.2.2

 54

Figure 38: Merge models wizard: the Merge Panel with the controls for tuning the merging algo-
rithm.

The tuning operation affects the merging process. The MERGE button should be
pressed when the confidence and the conditions are set.

Figure 39: Merge Models wizard: the Merge Perspective with the merge model result.

The merge algorithm is quite simple in its logic. When two nodes are considered
equals (and this condition is accepted on the merge panel) the one coming from the
first model will be included in the merge output model. Each sub-tree belonging to
the two merged nodes is included and linked to this new resulting node. The link is
realized through an “OR” operator into the output model. The role of this operator is
to preserve the integrity of all the paths originally structured on the input models.
The final output is the iteration on all the equal nodes on the merged model, so that
any duplicated node is reduced to a single one.

INDENICA D1.2.2

 55

4.1.4 Other improvements
Additionally to the main features described in the previous sections, IRET has a set of
minor new features. These improvements were realized to address suggestions and
requests of the IRET users and other INDENICA WPs; we will briefly present the most
relevant ones in the following:

New wizard for model creation: a simplified wizard to create an IRENE model has
been introduced. Instead of selecting in two steps the name of the model and
the name of the view, now the user may insert only the name of the model. Now
when user creates a model a view with the same file name is created automati-
cally;

New graphical elements: one of the most common feedback that we received
after the first release of IRET (as described in D1.2.1) was the difficulty in finding
the elements in the palette. In order to address this comment we developed set
of new icons (Figure 40) to replace the default ones. The new graphical elements
help in understanding faster the meaning of nodes and links that can be used in
the diagram, improving the usability of the system.

Figure 40: New graphical elements for IRENE elements

Copy and paste: The need of reuse existing elements such as goals or actors in
different model is quite common. For this reason, another request we often re-
ceived was the feature of copy and paste elements between models. We imple-
mented it, enabling IRET to copy and paste elements between diagrams. It is
worth noting that the copied element doesn’t maintain any relation with the

INDENICA D1.2.2

 56

original element: this operation creates a “clone” of the original element in the
target model.

4.1.5 Integration with other tools
IRET is integrated with other two INDENICA tools: the Priorization Tool Support and
EASy. The first application aims to determine the priority of the requirements and it
consumes as input IRENE models. We will go in depth on this topic in Section 4.2.

On the other hand EASy is a modelling tool developed by WP2 to allow INDENICA
users to define variability models. In general goal modelling and variability defini-
tions are two parallel activities: it means that we should provide some features to
help users to do both the task at the same time. It is the main goal that the IRET-
EASy Bridge aims to achieve. The tool has been developed by WP1 in cooperation
with WP2.

By a technical point of view, both IRET and EASy are Eclipse plug-ins; this fact helps in
the integration process through the exploitation of the features offered by the
Eclipse framework.

Figure 41: IRET-EASy Bridge architecture

Figure shows the high level architecture of the integration: IRET and EASy are two
Eclipse plug-in that can be installed independently the one from the other (i.e. it is
possible to install only IRET or only EASy); IRET-EASy Bridge is another Eclipse plug-in
that depends from both IRET and EASy. It means that it requires both the tools in
order to work. Detailed instructions on how to install the bridge plug-in are available
in the Appendix.

By a graphical point of view the tool introduces a new View, named EASy Variability
(Figure).

INDENICA D1.2.2

 57

Figure 42: IRET-EASy Bridge view.

The view is opened in the IRET perspective and allows users to control the EASy tool
from IRET. The interface offers four operations:

1. Connection to EASy: the button opens a connection with the EASy-producer. It is
the first step required to add the variable and the constraints;

2. Variable definitions3: through this form is possible to add new variables to the
variability model. The three required fields to define a variable are:

o The name of the variable;

o The type of the variable (Integer, String, Boolean, etc.);

o The binding time (compile time, run time, etc.);

3. Constraint definitions3: the form is used to define and submit a new constraints
to the variability model;

4. Close the model: the last button closes the connection and starts the generation
of the EASy variability model. After that this button is pressed the EASy perspec-
tive is launched, allowing the user to use the user interface provided by the WP2
tool.

Variables and constraints are also added to the IRET file: the IRENE model has been
extended in order to enable the storage of this information (Figure).

3 Additional information about EASy and its data model are available in [TBC].

INDENICA D1.2.2

 58

Figure 43: EASy extension to the IRENE model.

The extension has been made in order to introduce a “save and restore” mechanism:
users can compose their models (the IRENE and the EASy ones) in several sessions,
closing the EASy model (operation 4) only when they finish the goal definition. The
extension is also a required basis to research on a more complex and automated
integration between the two methodologies (i.e. automatically infer parts of the
EASy model when user define elements of the IRENE model).

INDENICA D1.2.2

 59

4.2 Prioritization Tool Support
The tools for prioritization support were written in Java using Eclipse Indigo devel-
opment environment and a number of Java libraries:

JDOM for parsing XML files [jdom]

Java Excel API for reading and writing MS Excel files [jexcelapi]

JFreeChart for generating graphics [jfreechart]

4.2.1 Goal Extractor
In order to extract goals from a goal model for prioritization start the program Ex-
tract_Goals. In the first window you can select a number of IRET-files:

Figure 44: Goal Extractor: Selection of files.

With the button “Check” it is ensured that the path- and filename points an IRENE
goal model XML file (file type *.IRET). With buttons “+” and “-“ you can add or re-
move files from the list.

If all files are checked and marked “ok” press “ok” to continue. The selected XML
files are parsed now and a list of the extracted goals is shown:

Figure 45: Goal Extractor: list of goals for selection.

INDENICA D1.2.2

 60

The list of goals has seven columns.

Select: here you can tick the box for selecting a goal for further processing

Goal_Nr: sequence number of goals found in the IRET files

Level: position of the goal in the goal hierarchy; 0 is the root goal, the highest
number indicate the leaves

Name: name of the goal as entered in IRET

ID: internal goal ID in IRET (needed for identification when writing back priori-
ties)

Priority: priority of goal if entered in IRET; note that IRET does only allows
numbers, but does not apply any other rules

Description: as entered in IRET

The strategy for selecting the goals to be prioritized was discussed in chapter 3.5.2.

After pressing the button “OK” an Excel file is generated as entered in the field
Path_to_creating_file.

Figure 46: Excel file with selected goals.

This file can then be distributed to the involved user groups. For better readability it
is helpful to hide columns B and E as they are not relevant for the users but for inter-
nal processing only.

4.2.2 Prioritization Analyzer
After collecting the Excel files form all users that have done their voting store all files
in a dedicated directory and start the program “Prioritize_Goals”.

The first window is for selecting the files for comparison.

INDENICA D1.2.2

 61

Figure 47: Selecting prioritization files .

Enter the correct path of the directory and press “Refresh”. A list of all *.xls files is
shown. Mark the files for comparison in column one.

As an option you can enter a user / user group name in column four for each file. If
left free, in following windows the default names Usr_0, Usr_1, Usr_2 … will be used.

After pressing OK the files are read and all the prioritization values are shown in a
matrix.

Figure 48: Prioritization Matrix.

The matrix shows all user priority voting. In case a user did not vote or entered 0, a
dash is in the respective cell. If the use voting is not equal to the median, the vote is
written in red.

INDENICA D1.2.2

 62

Row 1 shows the requirement (or goal) number. When hovering with the mouse
over it, all information for a requirement is shown in a pop up box.

Row 2 shows the final priority, which is in the initial state of the matrix equal to the
median in row 3.

Row 3 shows the median value of votes on a requirement.

Row 4 shows the variance of user voting on the respective requirement. If this num-
ber is red, it is above threshold in the field “User Variance threshold” on the bottom
of the window. The default value is 40% and it can be changed by entering a number
and pressing the button “Refresh”.

With double click on the variance field, the window “Priorities per Requirement”
opens for further analysis (see below).

Column 1 shows the user name entered in the field selection box

Column 2 shows the congruence of the user’s voting, which is the number of voting
that are equal to the median.

Column 3 shows the variance of the user’s votes. If this number is red, it is above
threshold entered in the field “Requirements variance threshold” on the bottom of
the window. The default value is 50% and in can be changed by entering a number
and pressing the button “Refresh”.

Figure 49: Priorities per User.

The window “Priorities per User” allows a deeper insight in the priority voting of a
single user. On the right side there are options to limit the number of requirements
displayed and on the top line there are scroll arrows to see next or previous set of
requirements.

INDENICA D1.2.2

 63

Further there are a number of filters for selections:

Normal: shows all requirements

Only not defined shows all requirements on which the user did not vote

Without not defined shows only requirements on which the user did vote

Without not defined & med=prio shows all voting of the user which are not
equal to the median

Only med=prio+-2 shows all votes where the user voting differs with 2 or
more from the median.

With these options it is easy to identify user priority voting that should be further
analyzed and discussed.

If the user agrees to change his priority vote, it can be changed by clicking on the
vote in the table under the graphic and select the new priority vote.

Figure 50: Priorities per Requirement.

The window “Priorities per Requirement” shows all the user priority votes on a single
requirement. Its name is written on the top of the window.

Below the graphic a table shows the numerical values. A drop down list allows set-
ting the final priority of the requirement that was agreed upon. The default value is
equal to the median.

When clicking “OK” the final value is written to the matrix and the Prioritization Ma-
trix (Figure) is shown with the updated values.

INDENICA D1.2.2

 64

When clicking “Save” the final priority, an IRET goal model file can be specified,
where the goals were extracted and the priorities are written into this model using
the goal IDs. If the goals cannot be identified a warning is issued.

INDENICA D1.2.2

 65

5 Conclusions

This document adds to and complete the work initially presented in D12.1. After the
first two years of the project, this is also the end of the theoretical work on the IN-
DENICA solution for requirements elicitation and specification. In these years, the
work proceeded according to some parallel threads: (a) the work on defining the
elicitation process and methods, (b) the work on ROI calculation, (c) the work on
IRENE, the goal-oriented specification notation, (d) the work on composing conflict-
ing priorities, and (e) the development of the different supporting tools. As further
dimension, we can also mention the work done by our users and demonstrators,
who started working on the first ideas and versions of the proposed solution, and
with their comments, suggestions, and bug reports helped us improve final set of
methods and tools.

Now that the INDENICA solution for requirements elicitation comprises a coherent
set of methods and tools, and that it addresses the problem of eliciting the different
requirements for service platforms from different viewpoints, it is time to move to
the next phase. Within the project, users and demonstrators are required to keep
working on these methods and tools, and provide further comments and a more
thorough evaluation. Outside the project, it is now time to present these ideas, along
with their supporting tools, to the international community (e.g., through focus
groups, industry-oriented seminars, and participation to the main academic confer-
ences in the field).

INDENICA D1.2.2

 66

6 References

[Anton, Potts 2009] Annie I. Anton, Colin Potts: The Use of Goals to Surface Re-
quirements for Evolving Systems (Scientific Literature Digital Library and Search En-
gine (United States) 2009.

[DeBaud 1999] J-M DeBaud, K. Schmid: A Systematic Approach to Derive the Scope
of Software Product Lines. ICSE '99 Proceedings of the 21st international conference
on Software engineering 1999

[Evans 2002] Evans, Meryl K.: Understanding UCD (Interview with Peter Merholz and
Nathan Shedroff)
http://www.digital-web.com/articles/peter_merholz_and_nathan_shedroff (
accessed May 25, 2011.

[Sun 2007] Hongquing Sun: Developing User-centric Software Requirements Specifi-
cations. Master Thesis at the Mc Master University, Hamilton, Ontario, 2007

[Kang et al. 1990] K.Kang, S. Cohen, J. Hess, W. Novak and S. Petersen: Feature-
Oriented domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-
21, SEI, Carnegie Mellon Univ., Nov. 1990.

[Kreuter2008] Kreuter et al.: Applying a Cost Model for Product Lines: Experience
Report. MESPUL 2008.

[Krueger2007] Krueger: The 3-Tiered Methodology: Pragmatic Insights from New
Generation Software Product Lines: Proceedings of the 11th International Software
Product Line Conference, IEEE Computer Society, 2007

[Mikyeong2005] M. Mikyeong, Y. Keunhyuk, S.C. Heung: An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality and Variability Analy-
sis in a Product Line: IEEE Transactions on software engineering, Vol. 31, No. 7 ,July
2005

[Schleicher2004] W. Schleicher: Domain Analysis und Scoping: Seminar Produktli-
nien, Uni Stuttgart WS 2003/2004

[Sutcliffe1998] Alistair G. Sutcliffe: Scenario-based Requirements Analysis, Require-
ments Engineering Journal, Vol. 3, pp. 48-65, 1998

[Voelter2006] Stahl, Voelter: Model-Driven Software Development Technology, En-
gineering, Management: Wiley, 2006

[Pohl2005] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product Line Engineering
Foundations, Principles, and Techniques. Berlin: Springer, 2005.

[Clements2005] Clements, McGregor, Cohen: The Structured Intuitive Model for
Product Line Economics (SIMPLE):, Technical Report, CMU/SEI-2005-TR-003, ESC-TR-
2005-003, 2005

[Böckle2004] Böckle et al.: Software Produktlinien: Methoden, Einführung, Praxis,
dpunkt-Verlag 2004.

INDENICA D1.2.2

 67

[Bosch2002] Bosch: Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organization, Proceedings of the Second Conference Software Product
Line Conference (SPLC2), pp. 257-271, August 2002.

[Bosch2000] Bosch: Design and Use of Software Architectures: Adopting and Evolving
a Product Line Approach: Addison Wesley, 2000

[Bayer1999] Bayer, Flege, Knauber, Laqua, Muthig, Schmid, Widen, DeBaud: PuLSE: A
Methodology to Develop Software Product Lines: Proceedings of the 1999 symposi-
um on Software reusability, pp. 122 – 131, 1999

[STARS 1996]: Informal Technical Report for “Software Technology for Adaptable,
reliable Systems (STARS)”. Organization domain Modelling (ODM) Guidebook, Ver-
sion 2.0, June 1996.

[SRI 1995]: Department of Defense - Software Reuse Initiative, Version 3.1. Domain
Scoping Framework, Volume 2: Technical Description, 1995

[Lauenroth et al. 08] K. Lauenroth, K. Pohl. "Dynamic Consistency Checking of Do-
main Requirements in Product Line Engineering," Proceedings of the 16th Interna-
tional Requirements Engineering Conference (RE '08)., pp.193-202, 2008.

[Pnuli 77] A. Pnueli. The Temporal Logic of Programs. In 18th Symposium on Foun-
dations of Computer Science (FOCS), pages 46–57, 1977.

[ReleasePlanner]

[van Lamsweerde 2009] Axel van Lamsweerde. Requirements Engineering: From Sys-
tem Goals to UML Models to Software Specifications. John Wiley, 2009.

[Hoffmann 2011] Hajo Hoffmann, Requirements Engineering & Scrum, Systemana-
lyse im agilen Umfeld; in: Marc Sihling, Andreas Rausch, Christian Lange, Marco
Kuhrmann (Hrsg.) Software & Systems Engineering Essentials, Proceedings 2011

[Mikeyong, Keunhyuk et al. 2005] Mikeyong Moon, Keunhyuk Yeom and Heung Seok
Chae. An Approach to Developing Domain Requirements as a Core Asset Based on
Commonality and Variability Analysis in a Product Line in IEEE Transactions on Soft-
ware Engineering, Vol. 31, No. 7, July 2005.

[Potts et al. 1994] C. Potts, K. Takahashi, A. Antón: Inquiry Based Requirements Anal-
ysis, IEEE Software, March 1994.

[PuLSe] see www.software-kompetenz.de , the use search function for “PuLSe”, ac-
cessed 23. August 2012

[Lennon et al. 1988] M. Lennon, D. Pierce, B. Tarry, P. Willett, An evaluation of some
conflation algorithms for information retrieval, Journal of Information Science 8 (3)
(1988) 99–105.
[Seco et al. 2004] N. Seco, T. Veale, J. Hayes, An intrinsic information content metric
for semantic similarity in Wordnet, in: Proc. Eureopean Conf. on Artificial Intelligence
(ECAI’04), Valencia, Spain, August 22-27, IOS Press, 2004, pp. 1089–1090.

[JavaSimLib] JavaSimLib – http://kenai.com/projects/javasimlib

[jdom] JDOM for parsing XML files, available via: http://www.jdom.org/

INDENICA D1.2.2

 68

[jexelapi] Java Excel API for reading and writing MS Excel files, available via:
http://jexcelapi.sourceforge.net/

[jfreechart] JFreeChart, available via http://www.jfree.org/jfreechart/

 [EMF] Eclipse Modeling Framework Project (EMF) -
http://www.eclipse.org/modeling/emf/

[WordNet] http://wordnet.princeton.edu/

INDENICA D1.2.2

 69

Appendix

We have successfully tested IRET on Eclipse 3.6 (Helios) and 3.7 (Indigo) on the fol-
lowing operating systems:

- Ubuntu 11.04
- Windows 7

6.1 Installation
- Download the IRET zip file from this site:

https://repository.sse.uni-hildesheim.de/svn/Indenica/deliverables/wp1/d121-release
- Unzip the file
- Open the Eclipse Install dialog (Help Install New Software…)
- Load the IRET update site from the local folder (see Figure A.1)

Figure A.1: Load of the IRET update site in Eclipse.

- Check IRENE Toolset to install all the plug-ins composing IRET:
o IRET Model
o IRET Edit
o IRET Diagram

- Press the Next button and follow the wizard procedure: it will install IRET and all the
plug-ins it requires to run

- Restart Eclipse

